zig/lib/std/process.zig

1218 lines
44 KiB
Zig

const std = @import("std.zig");
const builtin = @import("builtin");
const os = std.os;
const fs = std.fs;
const mem = std.mem;
const math = std.math;
const Allocator = mem.Allocator;
const assert = std.debug.assert;
const testing = std.testing;
const child_process = @import("child_process.zig");
pub const abort = os.abort;
pub const exit = os.exit;
pub const changeCurDir = os.chdir;
pub const changeCurDirC = os.chdirC;
/// The result is a slice of `out_buffer`, from index `0`.
pub fn getCwd(out_buffer: []u8) ![]u8 {
return os.getcwd(out_buffer);
}
/// Caller must free the returned memory.
pub fn getCwdAlloc(allocator: Allocator) ![]u8 {
// The use of MAX_PATH_BYTES here is just a heuristic: most paths will fit
// in stack_buf, avoiding an extra allocation in the common case.
var stack_buf: [fs.MAX_PATH_BYTES]u8 = undefined;
var heap_buf: ?[]u8 = null;
defer if (heap_buf) |buf| allocator.free(buf);
var current_buf: []u8 = &stack_buf;
while (true) {
if (os.getcwd(current_buf)) |slice| {
return allocator.dupe(u8, slice);
} else |err| switch (err) {
error.NameTooLong => {
// The path is too long to fit in stack_buf. Allocate geometrically
// increasing buffers until we find one that works
const new_capacity = current_buf.len * 2;
if (heap_buf) |buf| allocator.free(buf);
current_buf = try allocator.alloc(u8, new_capacity);
heap_buf = current_buf;
},
else => |e| return e,
}
}
}
test "getCwdAlloc" {
if (builtin.os.tag == .wasi) return error.SkipZigTest;
const cwd = try getCwdAlloc(testing.allocator);
testing.allocator.free(cwd);
}
pub const EnvMap = struct {
hash_map: HashMap,
const HashMap = std.HashMap(
[]const u8,
[]const u8,
EnvNameHashContext,
std.hash_map.default_max_load_percentage,
);
pub const Size = HashMap.Size;
pub const EnvNameHashContext = struct {
fn upcase(c: u21) u21 {
if (c <= std.math.maxInt(u16))
return std.os.windows.ntdll.RtlUpcaseUnicodeChar(@intCast(u16, c));
return c;
}
pub fn hash(self: @This(), s: []const u8) u64 {
_ = self;
if (builtin.os.tag == .windows) {
var h = std.hash.Wyhash.init(0);
var it = std.unicode.Utf8View.initUnchecked(s).iterator();
while (it.nextCodepoint()) |cp| {
const cp_upper = upcase(cp);
h.update(&[_]u8{
@intCast(u8, (cp_upper >> 16) & 0xff),
@intCast(u8, (cp_upper >> 8) & 0xff),
@intCast(u8, (cp_upper >> 0) & 0xff),
});
}
return h.final();
}
return std.hash_map.hashString(s);
}
pub fn eql(self: @This(), a: []const u8, b: []const u8) bool {
_ = self;
if (builtin.os.tag == .windows) {
var it_a = std.unicode.Utf8View.initUnchecked(a).iterator();
var it_b = std.unicode.Utf8View.initUnchecked(b).iterator();
while (true) {
const c_a = it_a.nextCodepoint() orelse break;
const c_b = it_b.nextCodepoint() orelse return false;
if (upcase(c_a) != upcase(c_b))
return false;
}
return if (it_b.nextCodepoint()) |_| false else true;
}
return std.hash_map.eqlString(a, b);
}
};
/// Create a EnvMap backed by a specific allocator.
/// That allocator will be used for both backing allocations
/// and string deduplication.
pub fn init(allocator: Allocator) EnvMap {
return EnvMap{ .hash_map = HashMap.init(allocator) };
}
/// Free the backing storage of the map, as well as all
/// of the stored keys and values.
pub fn deinit(self: *EnvMap) void {
var it = self.hash_map.iterator();
while (it.next()) |entry| {
self.free(entry.key_ptr.*);
self.free(entry.value_ptr.*);
}
self.hash_map.deinit();
}
/// Same as `put` but the key and value become owned by the EnvMap rather
/// than being copied.
/// If `putMove` fails, the ownership of key and value does not transfer.
/// On Windows `key` must be a valid UTF-8 string.
pub fn putMove(self: *EnvMap, key: []u8, value: []u8) !void {
const get_or_put = try self.hash_map.getOrPut(key);
if (get_or_put.found_existing) {
self.free(get_or_put.key_ptr.*);
self.free(get_or_put.value_ptr.*);
get_or_put.key_ptr.* = key;
}
get_or_put.value_ptr.* = value;
}
/// `key` and `value` are copied into the EnvMap.
/// On Windows `key` must be a valid UTF-8 string.
pub fn put(self: *EnvMap, key: []const u8, value: []const u8) !void {
const value_copy = try self.copy(value);
errdefer self.free(value_copy);
const get_or_put = try self.hash_map.getOrPut(key);
if (get_or_put.found_existing) {
self.free(get_or_put.value_ptr.*);
} else {
get_or_put.key_ptr.* = self.copy(key) catch |err| {
_ = self.hash_map.remove(key);
return err;
};
}
get_or_put.value_ptr.* = value_copy;
}
/// Find the address of the value associated with a key.
/// The returned pointer is invalidated if the map resizes.
/// On Windows `key` must be a valid UTF-8 string.
pub fn getPtr(self: EnvMap, key: []const u8) ?*[]const u8 {
return self.hash_map.getPtr(key);
}
/// Return the map's copy of the value associated with
/// a key. The returned string is invalidated if this
/// key is removed from the map.
/// On Windows `key` must be a valid UTF-8 string.
pub fn get(self: EnvMap, key: []const u8) ?[]const u8 {
return self.hash_map.get(key);
}
/// Removes the item from the map and frees its value.
/// This invalidates the value returned by get() for this key.
/// On Windows `key` must be a valid UTF-8 string.
pub fn remove(self: *EnvMap, key: []const u8) void {
const kv = self.hash_map.fetchRemove(key) orelse return;
self.free(kv.key);
self.free(kv.value);
}
/// Returns the number of KV pairs stored in the map.
pub fn count(self: EnvMap) HashMap.Size {
return self.hash_map.count();
}
/// Returns an iterator over entries in the map.
pub fn iterator(self: *const EnvMap) HashMap.Iterator {
return self.hash_map.iterator();
}
fn free(self: EnvMap, value: []const u8) void {
self.hash_map.allocator.free(value);
}
fn copy(self: EnvMap, value: []const u8) ![]u8 {
return self.hash_map.allocator.dupe(u8, value);
}
};
test "EnvMap" {
var env = EnvMap.init(testing.allocator);
defer env.deinit();
try env.put("SOMETHING_NEW", "hello");
try testing.expectEqualStrings("hello", env.get("SOMETHING_NEW").?);
try testing.expectEqual(@as(EnvMap.Size, 1), env.count());
// overwrite
try env.put("SOMETHING_NEW", "something");
try testing.expectEqualStrings("something", env.get("SOMETHING_NEW").?);
try testing.expectEqual(@as(EnvMap.Size, 1), env.count());
// a new longer name to test the Windows-specific conversion buffer
try env.put("SOMETHING_NEW_AND_LONGER", "1");
try testing.expectEqualStrings("1", env.get("SOMETHING_NEW_AND_LONGER").?);
try testing.expectEqual(@as(EnvMap.Size, 2), env.count());
// case insensitivity on Windows only
if (builtin.os.tag == .windows) {
try testing.expectEqualStrings("1", env.get("something_New_aNd_LONGER").?);
} else {
try testing.expect(null == env.get("something_New_aNd_LONGER"));
}
var it = env.iterator();
var count: EnvMap.Size = 0;
while (it.next()) |entry| {
const is_an_expected_name = std.mem.eql(u8, "SOMETHING_NEW", entry.key_ptr.*) or std.mem.eql(u8, "SOMETHING_NEW_AND_LONGER", entry.key_ptr.*);
try testing.expect(is_an_expected_name);
count += 1;
}
try testing.expectEqual(@as(EnvMap.Size, 2), count);
env.remove("SOMETHING_NEW");
try testing.expect(env.get("SOMETHING_NEW") == null);
try testing.expectEqual(@as(EnvMap.Size, 1), env.count());
// test Unicode case-insensitivity on Windows
if (builtin.os.tag == .windows) {
try env.put("КИРиллИЦА", "something else");
try testing.expectEqualStrings("something else", env.get("кириллица").?);
}
}
/// Returns a snapshot of the environment variables of the current process.
/// Any modifications to the resulting EnvMap will not be not reflected in the environment, and
/// likewise, any future modifications to the environment will not be reflected in the EnvMap.
/// Caller owns resulting `EnvMap` and should call its `deinit` fn when done.
pub fn getEnvMap(allocator: Allocator) !EnvMap {
var result = EnvMap.init(allocator);
errdefer result.deinit();
if (builtin.os.tag == .windows) {
const ptr = os.windows.peb().ProcessParameters.Environment;
var i: usize = 0;
while (ptr[i] != 0) {
const key_start = i;
// There are some special environment variables that start with =,
// so we need a special case to not treat = as a key/value separator
// if it's the first character.
// https://devblogs.microsoft.com/oldnewthing/20100506-00/?p=14133
if (ptr[key_start] == '=') i += 1;
while (ptr[i] != 0 and ptr[i] != '=') : (i += 1) {}
const key_w = ptr[key_start..i];
const key = try std.unicode.utf16leToUtf8Alloc(allocator, key_w);
errdefer allocator.free(key);
if (ptr[i] == '=') i += 1;
const value_start = i;
while (ptr[i] != 0) : (i += 1) {}
const value_w = ptr[value_start..i];
const value = try std.unicode.utf16leToUtf8Alloc(allocator, value_w);
errdefer allocator.free(value);
i += 1; // skip over null byte
try result.putMove(key, value);
}
return result;
} else if (builtin.os.tag == .wasi and !builtin.link_libc) {
var environ_count: usize = undefined;
var environ_buf_size: usize = undefined;
const environ_sizes_get_ret = os.wasi.environ_sizes_get(&environ_count, &environ_buf_size);
if (environ_sizes_get_ret != .SUCCESS) {
return os.unexpectedErrno(environ_sizes_get_ret);
}
var environ = try allocator.alloc([*:0]u8, environ_count);
defer allocator.free(environ);
var environ_buf = try allocator.alloc(u8, environ_buf_size);
defer allocator.free(environ_buf);
const environ_get_ret = os.wasi.environ_get(environ.ptr, environ_buf.ptr);
if (environ_get_ret != .SUCCESS) {
return os.unexpectedErrno(environ_get_ret);
}
for (environ) |env| {
const pair = mem.sliceTo(env, 0);
var parts = mem.split(u8, pair, "=");
const key = parts.first();
const value = parts.next().?;
try result.put(key, value);
}
return result;
} else if (builtin.link_libc) {
var ptr = std.c.environ;
while (ptr[0]) |line| : (ptr += 1) {
var line_i: usize = 0;
while (line[line_i] != 0 and line[line_i] != '=') : (line_i += 1) {}
const key = line[0..line_i];
var end_i: usize = line_i;
while (line[end_i] != 0) : (end_i += 1) {}
const value = line[line_i + 1 .. end_i];
try result.put(key, value);
}
return result;
} else {
for (os.environ) |line| {
var line_i: usize = 0;
while (line[line_i] != 0 and line[line_i] != '=') : (line_i += 1) {}
const key = line[0..line_i];
var end_i: usize = line_i;
while (line[end_i] != 0) : (end_i += 1) {}
const value = line[line_i + 1 .. end_i];
try result.put(key, value);
}
return result;
}
}
test "getEnvMap" {
var env = try getEnvMap(testing.allocator);
defer env.deinit();
}
pub const GetEnvVarOwnedError = error{
OutOfMemory,
EnvironmentVariableNotFound,
/// See https://github.com/ziglang/zig/issues/1774
InvalidUtf8,
};
/// Caller must free returned memory.
pub fn getEnvVarOwned(allocator: mem.Allocator, key: []const u8) GetEnvVarOwnedError![]u8 {
if (builtin.os.tag == .windows) {
const result_w = blk: {
const key_w = try std.unicode.utf8ToUtf16LeWithNull(allocator, key);
defer allocator.free(key_w);
break :blk std.os.getenvW(key_w) orelse return error.EnvironmentVariableNotFound;
};
return std.unicode.utf16leToUtf8Alloc(allocator, result_w) catch |err| switch (err) {
error.DanglingSurrogateHalf => return error.InvalidUtf8,
error.ExpectedSecondSurrogateHalf => return error.InvalidUtf8,
error.UnexpectedSecondSurrogateHalf => return error.InvalidUtf8,
else => |e| return e,
};
} else {
const result = os.getenv(key) orelse return error.EnvironmentVariableNotFound;
return allocator.dupe(u8, result);
}
}
pub fn hasEnvVarConstant(comptime key: []const u8) bool {
if (builtin.os.tag == .windows) {
const key_w = comptime std.unicode.utf8ToUtf16LeStringLiteral(key);
return std.os.getenvW(key_w) != null;
} else {
return os.getenv(key) != null;
}
}
pub fn hasEnvVar(allocator: Allocator, key: []const u8) error{OutOfMemory}!bool {
if (builtin.os.tag == .windows) {
var stack_alloc = std.heap.stackFallback(256 * @sizeOf(u16), allocator);
const key_w = try std.unicode.utf8ToUtf16LeWithNull(stack_alloc.get(), key);
defer stack_alloc.allocator.free(key_w);
return std.os.getenvW(key_w) != null;
} else {
return os.getenv(key) != null;
}
}
test "os.getEnvVarOwned" {
var ga = std.testing.allocator;
try testing.expectError(error.EnvironmentVariableNotFound, getEnvVarOwned(ga, "BADENV"));
}
pub const ArgIteratorPosix = struct {
index: usize,
count: usize,
pub const InitError = error{};
pub fn init() ArgIteratorPosix {
return ArgIteratorPosix{
.index = 0,
.count = os.argv.len,
};
}
pub fn next(self: *ArgIteratorPosix) ?[:0]const u8 {
if (self.index == self.count) return null;
const s = os.argv[self.index];
self.index += 1;
return mem.sliceTo(s, 0);
}
pub fn skip(self: *ArgIteratorPosix) bool {
if (self.index == self.count) return false;
self.index += 1;
return true;
}
};
pub const ArgIteratorWasi = struct {
allocator: mem.Allocator,
index: usize,
args: [][:0]u8,
pub const InitError = error{OutOfMemory} || os.UnexpectedError;
/// You must call deinit to free the internal buffer of the
/// iterator after you are done.
pub fn init(allocator: mem.Allocator) InitError!ArgIteratorWasi {
const fetched_args = try ArgIteratorWasi.internalInit(allocator);
return ArgIteratorWasi{
.allocator = allocator,
.index = 0,
.args = fetched_args,
};
}
fn internalInit(allocator: mem.Allocator) InitError![][:0]u8 {
const w = os.wasi;
var count: usize = undefined;
var buf_size: usize = undefined;
switch (w.args_sizes_get(&count, &buf_size)) {
.SUCCESS => {},
else => |err| return os.unexpectedErrno(err),
}
var argv = try allocator.alloc([*:0]u8, count);
defer allocator.free(argv);
var argv_buf = try allocator.alloc(u8, buf_size);
switch (w.args_get(argv.ptr, argv_buf.ptr)) {
.SUCCESS => {},
else => |err| return os.unexpectedErrno(err),
}
var result_args = try allocator.alloc([:0]u8, count);
var i: usize = 0;
while (i < count) : (i += 1) {
result_args[i] = mem.sliceTo(argv[i], 0);
}
return result_args;
}
pub fn next(self: *ArgIteratorWasi) ?[:0]const u8 {
if (self.index == self.args.len) return null;
const arg = self.args[self.index];
self.index += 1;
return arg;
}
pub fn skip(self: *ArgIteratorWasi) bool {
if (self.index == self.args.len) return false;
self.index += 1;
return true;
}
/// Call to free the internal buffer of the iterator.
pub fn deinit(self: *ArgIteratorWasi) void {
const last_item = self.args[self.args.len - 1];
const last_byte_addr = @ptrToInt(last_item.ptr) + last_item.len + 1; // null terminated
const first_item_ptr = self.args[0].ptr;
const len = last_byte_addr - @ptrToInt(first_item_ptr);
self.allocator.free(first_item_ptr[0..len]);
self.allocator.free(self.args);
}
};
/// Optional parameters for `ArgIteratorGeneral`
pub const ArgIteratorGeneralOptions = struct {
comments: bool = false,
single_quotes: bool = false,
};
/// A general Iterator to parse a string into a set of arguments
pub fn ArgIteratorGeneral(comptime options: ArgIteratorGeneralOptions) type {
return struct {
allocator: Allocator,
index: usize = 0,
cmd_line: []const u8,
/// Should the cmd_line field be free'd (using the allocator) on deinit()?
free_cmd_line_on_deinit: bool,
/// buffer MUST be long enough to hold the cmd_line plus a null terminator.
/// buffer will we free'd (using the allocator) on deinit()
buffer: []u8,
start: usize = 0,
end: usize = 0,
pub const Self = @This();
pub const InitError = error{OutOfMemory};
pub const InitUtf16leError = error{ OutOfMemory, InvalidCmdLine };
/// cmd_line_utf8 MUST remain valid and constant while using this instance
pub fn init(allocator: Allocator, cmd_line_utf8: []const u8) InitError!Self {
var buffer = try allocator.alloc(u8, cmd_line_utf8.len + 1);
errdefer allocator.free(buffer);
return Self{
.allocator = allocator,
.cmd_line = cmd_line_utf8,
.free_cmd_line_on_deinit = false,
.buffer = buffer,
};
}
/// cmd_line_utf8 will be free'd (with the allocator) on deinit()
pub fn initTakeOwnership(allocator: Allocator, cmd_line_utf8: []const u8) InitError!Self {
var buffer = try allocator.alloc(u8, cmd_line_utf8.len + 1);
errdefer allocator.free(buffer);
return Self{
.allocator = allocator,
.cmd_line = cmd_line_utf8,
.free_cmd_line_on_deinit = true,
.buffer = buffer,
};
}
/// cmd_line_utf16le MUST be encoded UTF16-LE, and is converted to UTF-8 in an internal buffer
pub fn initUtf16le(allocator: Allocator, cmd_line_utf16le: [*:0]const u16) InitUtf16leError!Self {
var utf16le_slice = mem.sliceTo(cmd_line_utf16le, 0);
var cmd_line = std.unicode.utf16leToUtf8Alloc(allocator, utf16le_slice) catch |err| switch (err) {
error.ExpectedSecondSurrogateHalf,
error.DanglingSurrogateHalf,
error.UnexpectedSecondSurrogateHalf,
=> return error.InvalidCmdLine,
error.OutOfMemory => return error.OutOfMemory,
};
errdefer allocator.free(cmd_line);
var buffer = try allocator.alloc(u8, cmd_line.len + 1);
errdefer allocator.free(buffer);
return Self{
.allocator = allocator,
.cmd_line = cmd_line,
.free_cmd_line_on_deinit = true,
.buffer = buffer,
};
}
// Skips over whitespace in the cmd_line.
// Returns false if the terminating sentinel is reached, true otherwise.
// Also skips over comments (if supported).
fn skipWhitespace(self: *Self) bool {
while (true) : (self.index += 1) {
const character = if (self.index != self.cmd_line.len) self.cmd_line[self.index] else 0;
switch (character) {
0 => return false,
' ', '\t', '\r', '\n' => continue,
'#' => {
if (options.comments) {
while (true) : (self.index += 1) {
switch (self.cmd_line[self.index]) {
'\n' => break,
0 => return false,
else => continue,
}
}
continue;
} else {
break;
}
},
else => break,
}
}
return true;
}
pub fn skip(self: *Self) bool {
if (!self.skipWhitespace()) {
return false;
}
var backslash_count: usize = 0;
var in_quote = false;
while (true) : (self.index += 1) {
const character = if (self.index != self.cmd_line.len) self.cmd_line[self.index] else 0;
switch (character) {
0 => return true,
'"', '\'' => {
if (!options.single_quotes and character == '\'') {
backslash_count = 0;
continue;
}
const quote_is_real = backslash_count % 2 == 0;
if (quote_is_real) {
in_quote = !in_quote;
}
},
'\\' => {
backslash_count += 1;
},
' ', '\t', '\r', '\n' => {
if (!in_quote) {
return true;
}
backslash_count = 0;
},
else => {
backslash_count = 0;
continue;
},
}
}
}
/// Returns a slice of the internal buffer that contains the next argument.
/// Returns null when it reaches the end.
pub fn next(self: *Self) ?[:0]const u8 {
if (!self.skipWhitespace()) {
return null;
}
var backslash_count: usize = 0;
var in_quote = false;
while (true) : (self.index += 1) {
const character = if (self.index != self.cmd_line.len) self.cmd_line[self.index] else 0;
switch (character) {
0 => {
self.emitBackslashes(backslash_count);
self.buffer[self.end] = 0;
var token = self.buffer[self.start..self.end :0];
self.end += 1;
self.start = self.end;
return token;
},
'"', '\'' => {
if (!options.single_quotes and character == '\'') {
self.emitBackslashes(backslash_count);
backslash_count = 0;
self.emitCharacter(character);
continue;
}
const quote_is_real = backslash_count % 2 == 0;
self.emitBackslashes(backslash_count / 2);
backslash_count = 0;
if (quote_is_real) {
in_quote = !in_quote;
} else {
self.emitCharacter('"');
}
},
'\\' => {
backslash_count += 1;
},
' ', '\t', '\r', '\n' => {
self.emitBackslashes(backslash_count);
backslash_count = 0;
if (in_quote) {
self.emitCharacter(character);
} else {
self.buffer[self.end] = 0;
var token = self.buffer[self.start..self.end :0];
self.end += 1;
self.start = self.end;
return token;
}
},
else => {
self.emitBackslashes(backslash_count);
backslash_count = 0;
self.emitCharacter(character);
},
}
}
}
fn emitBackslashes(self: *Self, emit_count: usize) void {
var i: usize = 0;
while (i < emit_count) : (i += 1) {
self.emitCharacter('\\');
}
}
fn emitCharacter(self: *Self, char: u8) void {
self.buffer[self.end] = char;
self.end += 1;
}
/// Call to free the internal buffer of the iterator.
pub fn deinit(self: *Self) void {
self.allocator.free(self.buffer);
if (self.free_cmd_line_on_deinit) {
self.allocator.free(self.cmd_line);
}
}
};
}
/// Cross-platform command line argument iterator.
pub const ArgIterator = struct {
const InnerType = switch (builtin.os.tag) {
.windows => ArgIteratorGeneral(.{}),
.wasi => if (builtin.link_libc) ArgIteratorPosix else ArgIteratorWasi,
else => ArgIteratorPosix,
};
inner: InnerType,
/// Initialize the args iterator. Consider using initWithAllocator() instead
/// for cross-platform compatibility.
pub fn init() ArgIterator {
if (builtin.os.tag == .wasi) {
@compileError("In WASI, use initWithAllocator instead.");
}
if (builtin.os.tag == .windows) {
@compileError("In Windows, use initWithAllocator instead.");
}
return ArgIterator{ .inner = InnerType.init() };
}
pub const InitError = switch (builtin.os.tag) {
.windows => InnerType.InitUtf16leError,
else => InnerType.InitError,
};
/// You must deinitialize iterator's internal buffers by calling `deinit` when done.
pub fn initWithAllocator(allocator: mem.Allocator) InitError!ArgIterator {
if (builtin.os.tag == .wasi and !builtin.link_libc) {
return ArgIterator{ .inner = try InnerType.init(allocator) };
}
if (builtin.os.tag == .windows) {
const cmd_line_w = os.windows.kernel32.GetCommandLineW();
return ArgIterator{ .inner = try InnerType.initUtf16le(allocator, cmd_line_w) };
}
return ArgIterator{ .inner = InnerType.init() };
}
/// Get the next argument. Returns 'null' if we are at the end.
/// Returned slice is pointing to the iterator's internal buffer.
pub fn next(self: *ArgIterator) ?([:0]const u8) {
return self.inner.next();
}
/// Parse past 1 argument without capturing it.
/// Returns `true` if skipped an arg, `false` if we are at the end.
pub fn skip(self: *ArgIterator) bool {
return self.inner.skip();
}
/// Call this to free the iterator's internal buffer if the iterator
/// was created with `initWithAllocator` function.
pub fn deinit(self: *ArgIterator) void {
// Unless we're targeting WASI or Windows, this is a no-op.
if (builtin.os.tag == .wasi and !builtin.link_libc) {
self.inner.deinit();
}
if (builtin.os.tag == .windows) {
self.inner.deinit();
}
}
};
/// Use argsWithAllocator() for cross-platform code
pub fn args() ArgIterator {
return ArgIterator.init();
}
/// You must deinitialize iterator's internal buffers by calling `deinit` when done.
pub fn argsWithAllocator(allocator: mem.Allocator) ArgIterator.InitError!ArgIterator {
return ArgIterator.initWithAllocator(allocator);
}
test "args iterator" {
var ga = std.testing.allocator;
var it = try argsWithAllocator(ga);
defer it.deinit(); // no-op unless WASI or Windows
const prog_name = it.next() orelse unreachable;
const expected_suffix = switch (builtin.os.tag) {
.wasi => "test.wasm",
.windows => "test.exe",
else => "test",
};
const given_suffix = std.fs.path.basename(prog_name);
try testing.expect(mem.eql(u8, expected_suffix, given_suffix));
try testing.expect(it.skip()); // Skip over zig_exe_path, passed to the test runner
try testing.expect(it.next() == null);
try testing.expect(!it.skip());
}
/// Caller must call argsFree on result.
pub fn argsAlloc(allocator: mem.Allocator) ![][:0]u8 {
// TODO refactor to only make 1 allocation.
var it = try argsWithAllocator(allocator);
defer it.deinit();
var contents = std.ArrayList(u8).init(allocator);
defer contents.deinit();
var slice_list = std.ArrayList(usize).init(allocator);
defer slice_list.deinit();
while (it.next()) |arg| {
try contents.appendSlice(arg[0 .. arg.len + 1]);
try slice_list.append(arg.len);
}
const contents_slice = contents.items;
const slice_sizes = slice_list.items;
const slice_list_bytes = try math.mul(usize, @sizeOf([]u8), slice_sizes.len);
const total_bytes = try math.add(usize, slice_list_bytes, contents_slice.len);
const buf = try allocator.alignedAlloc(u8, @alignOf([]u8), total_bytes);
errdefer allocator.free(buf);
const result_slice_list = mem.bytesAsSlice([:0]u8, buf[0..slice_list_bytes]);
const result_contents = buf[slice_list_bytes..];
mem.copy(u8, result_contents, contents_slice);
var contents_index: usize = 0;
for (slice_sizes) |len, i| {
const new_index = contents_index + len;
result_slice_list[i] = result_contents[contents_index..new_index :0];
contents_index = new_index + 1;
}
return result_slice_list;
}
pub fn argsFree(allocator: mem.Allocator, args_alloc: []const [:0]u8) void {
var total_bytes: usize = 0;
for (args_alloc) |arg| {
total_bytes += @sizeOf([]u8) + arg.len + 1;
}
const unaligned_allocated_buf = @ptrCast([*]const u8, args_alloc.ptr)[0..total_bytes];
const aligned_allocated_buf = @alignCast(@alignOf([]u8), unaligned_allocated_buf);
return allocator.free(aligned_allocated_buf);
}
test "general arg parsing" {
try testGeneralCmdLine("a b\tc d", &.{ "a", "b", "c", "d" });
try testGeneralCmdLine("\"abc\" d e", &.{ "abc", "d", "e" });
try testGeneralCmdLine("a\\\\\\b d\"e f\"g h", &.{ "a\\\\\\b", "de fg", "h" });
try testGeneralCmdLine("a\\\\\\\"b c d", &.{ "a\\\"b", "c", "d" });
try testGeneralCmdLine("a\\\\\\\\\"b c\" d e", &.{ "a\\\\b c", "d", "e" });
try testGeneralCmdLine("a b\tc \"d f", &.{ "a", "b", "c", "d f" });
try testGeneralCmdLine("j k l\\", &.{ "j", "k", "l\\" });
try testGeneralCmdLine("\"\" x y z\\\\", &.{ "", "x", "y", "z\\\\" });
try testGeneralCmdLine("\".\\..\\zig-cache\\build\" \"bin\\zig.exe\" \".\\..\" \".\\..\\zig-cache\" \"--help\"", &.{
".\\..\\zig-cache\\build",
"bin\\zig.exe",
".\\..",
".\\..\\zig-cache",
"--help",
});
try testGeneralCmdLine(
\\ 'foo' "bar"
, &.{ "'foo'", "bar" });
}
fn testGeneralCmdLine(input_cmd_line: []const u8, expected_args: []const []const u8) !void {
var it = try ArgIteratorGeneral(.{}).init(std.testing.allocator, input_cmd_line);
defer it.deinit();
for (expected_args) |expected_arg| {
const arg = it.next().?;
try testing.expectEqualStrings(expected_arg, arg);
}
try testing.expect(it.next() == null);
}
test "response file arg parsing" {
try testResponseFileCmdLine(
\\a b
\\c d\
, &.{ "a", "b", "c", "d\\" });
try testResponseFileCmdLine("a b c d\\", &.{ "a", "b", "c", "d\\" });
try testResponseFileCmdLine(
\\j
\\ k l # this is a comment \\ \\\ \\\\ "none" "\\" "\\\"
\\ "m" #another comment
\\
, &.{ "j", "k", "l", "m" });
try testResponseFileCmdLine(
\\ "" q ""
\\ "r s # t" "u\" v" #another comment
\\
, &.{ "", "q", "", "r s # t", "u\" v" });
try testResponseFileCmdLine(
\\ -l"advapi32" a# b#c d#
\\e\\\
, &.{ "-ladvapi32", "a#", "b#c", "d#", "e\\\\\\" });
try testResponseFileCmdLine(
\\ 'foo' "bar"
, &.{ "foo", "bar" });
}
fn testResponseFileCmdLine(input_cmd_line: []const u8, expected_args: []const []const u8) !void {
var it = try ArgIteratorGeneral(.{ .comments = true, .single_quotes = true })
.init(std.testing.allocator, input_cmd_line);
defer it.deinit();
for (expected_args) |expected_arg| {
const arg = it.next().?;
try testing.expectEqualStrings(expected_arg, arg);
}
try testing.expect(it.next() == null);
}
pub const UserInfo = struct {
uid: os.uid_t,
gid: os.gid_t,
};
/// POSIX function which gets a uid from username.
pub fn getUserInfo(name: []const u8) !UserInfo {
return switch (builtin.os.tag) {
.linux, .macos, .watchos, .tvos, .ios, .freebsd, .netbsd, .openbsd, .haiku, .solaris => posixGetUserInfo(name),
else => @compileError("Unsupported OS"),
};
}
/// TODO this reads /etc/passwd. But sometimes the user/id mapping is in something else
/// like NIS, AD, etc. See `man nss` or look at an strace for `id myuser`.
pub fn posixGetUserInfo(name: []const u8) !UserInfo {
const file = try std.fs.openFileAbsolute("/etc/passwd", .{});
defer file.close();
const reader = file.reader();
const State = enum {
Start,
WaitForNextLine,
SkipPassword,
ReadUserId,
ReadGroupId,
};
var buf: [std.mem.page_size]u8 = undefined;
var name_index: usize = 0;
var state = State.Start;
var uid: os.uid_t = 0;
var gid: os.gid_t = 0;
while (true) {
const amt_read = try reader.read(buf[0..]);
for (buf[0..amt_read]) |byte| {
switch (state) {
.Start => switch (byte) {
':' => {
state = if (name_index == name.len) State.SkipPassword else State.WaitForNextLine;
},
'\n' => return error.CorruptPasswordFile,
else => {
if (name_index == name.len or name[name_index] != byte) {
state = .WaitForNextLine;
}
name_index += 1;
},
},
.WaitForNextLine => switch (byte) {
'\n' => {
name_index = 0;
state = .Start;
},
else => continue,
},
.SkipPassword => switch (byte) {
'\n' => return error.CorruptPasswordFile,
':' => {
state = .ReadUserId;
},
else => continue,
},
.ReadUserId => switch (byte) {
':' => {
state = .ReadGroupId;
},
'\n' => return error.CorruptPasswordFile,
else => {
const digit = switch (byte) {
'0'...'9' => byte - '0',
else => return error.CorruptPasswordFile,
};
if (@mulWithOverflow(u32, uid, 10, &uid)) return error.CorruptPasswordFile;
if (@addWithOverflow(u32, uid, digit, &uid)) return error.CorruptPasswordFile;
},
},
.ReadGroupId => switch (byte) {
'\n', ':' => {
return UserInfo{
.uid = uid,
.gid = gid,
};
},
else => {
const digit = switch (byte) {
'0'...'9' => byte - '0',
else => return error.CorruptPasswordFile,
};
if (@mulWithOverflow(u32, gid, 10, &gid)) return error.CorruptPasswordFile;
if (@addWithOverflow(u32, gid, digit, &gid)) return error.CorruptPasswordFile;
},
},
}
}
if (amt_read < buf.len) return error.UserNotFound;
}
}
pub fn getBaseAddress() usize {
switch (builtin.os.tag) {
.linux => {
const base = os.system.getauxval(std.elf.AT_BASE);
if (base != 0) {
return base;
}
const phdr = os.system.getauxval(std.elf.AT_PHDR);
return phdr - @sizeOf(std.elf.Ehdr);
},
.macos, .freebsd, .netbsd => {
return @ptrToInt(&std.c._mh_execute_header);
},
.windows => return @ptrToInt(os.windows.kernel32.GetModuleHandleW(null)),
else => @compileError("Unsupported OS"),
}
}
/// Caller owns the result value and each inner slice.
/// TODO Remove the `Allocator` requirement from this API, which will remove the `Allocator`
/// requirement from `std.zig.system.NativeTargetInfo.detect`. Most likely this will require
/// introducing a new, lower-level function which takes a callback function, and then this
/// function which takes an allocator can exist on top of it.
pub fn getSelfExeSharedLibPaths(allocator: Allocator) error{OutOfMemory}![][:0]u8 {
switch (builtin.link_mode) {
.Static => return &[_][:0]u8{},
.Dynamic => {},
}
const List = std.ArrayList([:0]u8);
switch (builtin.os.tag) {
.linux,
.freebsd,
.netbsd,
.dragonfly,
.openbsd,
.solaris,
=> {
var paths = List.init(allocator);
errdefer {
const slice = paths.toOwnedSlice();
for (slice) |item| {
allocator.free(item);
}
allocator.free(slice);
}
try os.dl_iterate_phdr(&paths, error{OutOfMemory}, struct {
fn callback(info: *os.dl_phdr_info, size: usize, list: *List) !void {
_ = size;
const name = info.dlpi_name orelse return;
if (name[0] == '/') {
const item = try list.allocator.dupeZ(u8, mem.sliceTo(name, 0));
errdefer list.allocator.free(item);
try list.append(item);
}
}
}.callback);
return paths.toOwnedSlice();
},
.macos, .ios, .watchos, .tvos => {
var paths = List.init(allocator);
errdefer {
const slice = paths.toOwnedSlice();
for (slice) |item| {
allocator.free(item);
}
allocator.free(slice);
}
const img_count = std.c._dyld_image_count();
var i: u32 = 0;
while (i < img_count) : (i += 1) {
const name = std.c._dyld_get_image_name(i);
const item = try allocator.dupeZ(u8, mem.sliceTo(name, 0));
errdefer allocator.free(item);
try paths.append(item);
}
return paths.toOwnedSlice();
},
// revisit if Haiku implements dl_iterat_phdr (https://dev.haiku-os.org/ticket/15743)
.haiku => {
var paths = List.init(allocator);
errdefer {
const slice = paths.toOwnedSlice();
for (slice) |item| {
allocator.free(item);
}
allocator.free(slice);
}
var b = "/boot/system/runtime_loader";
const item = try allocator.dupeZ(u8, mem.sliceTo(b, 0));
errdefer allocator.free(item);
try paths.append(item);
return paths.toOwnedSlice();
},
else => @compileError("getSelfExeSharedLibPaths unimplemented for this target"),
}
}
/// Tells whether calling the `execv` or `execve` functions will be a compile error.
pub const can_execv = switch (builtin.os.tag) {
.windows, .haiku, .wasi => false,
else => true,
};
/// Tells whether spawning child processes is supported (e.g. via ChildProcess)
pub const can_spawn = switch (builtin.os.tag) {
.wasi => false,
else => true,
};
pub const ExecvError = std.os.ExecveError || error{OutOfMemory};
/// Replaces the current process image with the executed process.
/// This function must allocate memory to add a null terminating bytes on path and each arg.
/// It must also convert to KEY=VALUE\0 format for environment variables, and include null
/// pointers after the args and after the environment variables.
/// `argv[0]` is the executable path.
/// This function also uses the PATH environment variable to get the full path to the executable.
/// Due to the heap-allocation, it is illegal to call this function in a fork() child.
/// For that use case, use the `std.os` functions directly.
pub fn execv(allocator: mem.Allocator, argv: []const []const u8) ExecvError {
return execve(allocator, argv, null);
}
/// Replaces the current process image with the executed process.
/// This function must allocate memory to add a null terminating bytes on path and each arg.
/// It must also convert to KEY=VALUE\0 format for environment variables, and include null
/// pointers after the args and after the environment variables.
/// `argv[0]` is the executable path.
/// This function also uses the PATH environment variable to get the full path to the executable.
/// Due to the heap-allocation, it is illegal to call this function in a fork() child.
/// For that use case, use the `std.os` functions directly.
pub fn execve(
allocator: mem.Allocator,
argv: []const []const u8,
env_map: ?*const EnvMap,
) ExecvError {
if (!can_execv) @compileError("The target OS does not support execv");
var arena_allocator = std.heap.ArenaAllocator.init(allocator);
defer arena_allocator.deinit();
const arena = arena_allocator.allocator();
const argv_buf = try arena.allocSentinel(?[*:0]u8, argv.len, null);
for (argv) |arg, i| argv_buf[i] = (try arena.dupeZ(u8, arg)).ptr;
const envp = m: {
if (env_map) |m| {
const envp_buf = try child_process.createNullDelimitedEnvMap(arena, m);
break :m envp_buf.ptr;
} else if (builtin.link_libc) {
break :m std.c.environ;
} else if (builtin.output_mode == .Exe) {
// Then we have Zig start code and this works.
// TODO type-safety for null-termination of `os.environ`.
break :m @ptrCast([*:null]?[*:0]u8, os.environ.ptr);
} else {
// TODO come up with a solution for this.
@compileError("missing std lib enhancement: std.process.execv implementation has no way to collect the environment variables to forward to the child process");
}
};
return os.execvpeZ_expandArg0(.no_expand, argv_buf.ptr[0].?, argv_buf.ptr, envp);
}