zig/lib/std/linked_list.zig
Andrew Kelley d29871977f remove redundant license headers from zig standard library
We already have a LICENSE file that covers the Zig Standard Library. We
no longer need to remind everyone that the license is MIT in every single
file.

Previously this was introduced to clarify the situation for a fork of
Zig that made Zig's LICENSE file harder to find, and replaced it with
their own license that required annual payments to their company.
However that fork now appears to be dead. So there is no need to
reinforce the copyright notice in every single file.
2021-08-24 12:25:09 -07:00

434 lines
13 KiB
Zig

const std = @import("std.zig");
const debug = std.debug;
const assert = debug.assert;
const testing = std.testing;
const mem = std.mem;
const Allocator = mem.Allocator;
/// A singly-linked list is headed by a single forward pointer. The elements
/// are singly linked for minimum space and pointer manipulation overhead at
/// the expense of O(n) removal for arbitrary elements. New elements can be
/// added to the list after an existing element or at the head of the list.
/// A singly-linked list may only be traversed in the forward direction.
/// Singly-linked lists are ideal for applications with large datasets and
/// few or no removals or for implementing a LIFO queue.
pub fn SinglyLinkedList(comptime T: type) type {
return struct {
const Self = @This();
/// Node inside the linked list wrapping the actual data.
pub const Node = struct {
next: ?*Node = null,
data: T,
pub const Data = T;
/// Insert a new node after the current one.
///
/// Arguments:
/// new_node: Pointer to the new node to insert.
pub fn insertAfter(node: *Node, new_node: *Node) void {
new_node.next = node.next;
node.next = new_node;
}
/// Remove a node from the list.
///
/// Arguments:
/// node: Pointer to the node to be removed.
/// Returns:
/// node removed
pub fn removeNext(node: *Node) ?*Node {
const next_node = node.next orelse return null;
node.next = next_node.next;
return next_node;
}
/// Iterate over the singly-linked list from this node, until the final node is found.
/// This operation is O(N).
pub fn findLast(node: *Node) *Node {
var it = node;
while (true) {
it = it.next orelse return it;
}
}
/// Iterate over each next node, returning the count of all nodes except the starting one.
/// This operation is O(N).
pub fn countChildren(node: *const Node) usize {
var count: usize = 0;
var it: ?*const Node = node.next;
while (it) |n| : (it = n.next) {
count += 1;
}
return count;
}
};
first: ?*Node = null,
/// Insert a new node at the head.
///
/// Arguments:
/// new_node: Pointer to the new node to insert.
pub fn prepend(list: *Self, new_node: *Node) void {
new_node.next = list.first;
list.first = new_node;
}
/// Remove a node from the list.
///
/// Arguments:
/// node: Pointer to the node to be removed.
pub fn remove(list: *Self, node: *Node) void {
if (list.first == node) {
list.first = node.next;
} else {
var current_elm = list.first.?;
while (current_elm.next != node) {
current_elm = current_elm.next.?;
}
current_elm.next = node.next;
}
}
/// Remove and return the first node in the list.
///
/// Returns:
/// A pointer to the first node in the list.
pub fn popFirst(list: *Self) ?*Node {
const first = list.first orelse return null;
list.first = first.next;
return first;
}
/// Iterate over all nodes, returning the count.
/// This operation is O(N).
pub fn len(list: Self) usize {
if (list.first) |n| {
return 1 + n.countChildren();
} else {
return 0;
}
}
};
}
test "basic SinglyLinkedList test" {
const L = SinglyLinkedList(u32);
var list = L{};
try testing.expect(list.len() == 0);
var one = L.Node{ .data = 1 };
var two = L.Node{ .data = 2 };
var three = L.Node{ .data = 3 };
var four = L.Node{ .data = 4 };
var five = L.Node{ .data = 5 };
list.prepend(&two); // {2}
two.insertAfter(&five); // {2, 5}
list.prepend(&one); // {1, 2, 5}
two.insertAfter(&three); // {1, 2, 3, 5}
three.insertAfter(&four); // {1, 2, 3, 4, 5}
try testing.expect(list.len() == 5);
// Traverse forwards.
{
var it = list.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
try testing.expect(node.data == index);
index += 1;
}
}
_ = list.popFirst(); // {2, 3, 4, 5}
_ = list.remove(&five); // {2, 3, 4}
_ = two.removeNext(); // {2, 4}
try testing.expect(list.first.?.data == 2);
try testing.expect(list.first.?.next.?.data == 4);
try testing.expect(list.first.?.next.?.next == null);
}
/// A tail queue is headed by a pair of pointers, one to the head of the
/// list and the other to the tail of the list. The elements are doubly
/// linked so that an arbitrary element can be removed without a need to
/// traverse the list. New elements can be added to the list before or
/// after an existing element, at the head of the list, or at the end of
/// the list. A tail queue may be traversed in either direction.
pub fn TailQueue(comptime T: type) type {
return struct {
const Self = @This();
/// Node inside the linked list wrapping the actual data.
pub const Node = struct {
prev: ?*Node = null,
next: ?*Node = null,
data: T,
};
first: ?*Node = null,
last: ?*Node = null,
len: usize = 0,
/// Insert a new node after an existing one.
///
/// Arguments:
/// node: Pointer to a node in the list.
/// new_node: Pointer to the new node to insert.
pub fn insertAfter(list: *Self, node: *Node, new_node: *Node) void {
new_node.prev = node;
if (node.next) |next_node| {
// Intermediate node.
new_node.next = next_node;
next_node.prev = new_node;
} else {
// Last element of the list.
new_node.next = null;
list.last = new_node;
}
node.next = new_node;
list.len += 1;
}
/// Insert a new node before an existing one.
///
/// Arguments:
/// node: Pointer to a node in the list.
/// new_node: Pointer to the new node to insert.
pub fn insertBefore(list: *Self, node: *Node, new_node: *Node) void {
new_node.next = node;
if (node.prev) |prev_node| {
// Intermediate node.
new_node.prev = prev_node;
prev_node.next = new_node;
} else {
// First element of the list.
new_node.prev = null;
list.first = new_node;
}
node.prev = new_node;
list.len += 1;
}
/// Concatenate list2 onto the end of list1, removing all entries from the former.
///
/// Arguments:
/// list1: the list to concatenate onto
/// list2: the list to be concatenated
pub fn concatByMoving(list1: *Self, list2: *Self) void {
const l2_first = list2.first orelse return;
if (list1.last) |l1_last| {
l1_last.next = list2.first;
l2_first.prev = list1.last;
list1.len += list2.len;
} else {
// list1 was empty
list1.first = list2.first;
list1.len = list2.len;
}
list1.last = list2.last;
list2.first = null;
list2.last = null;
list2.len = 0;
}
/// Insert a new node at the end of the list.
///
/// Arguments:
/// new_node: Pointer to the new node to insert.
pub fn append(list: *Self, new_node: *Node) void {
if (list.last) |last| {
// Insert after last.
list.insertAfter(last, new_node);
} else {
// Empty list.
list.prepend(new_node);
}
}
/// Insert a new node at the beginning of the list.
///
/// Arguments:
/// new_node: Pointer to the new node to insert.
pub fn prepend(list: *Self, new_node: *Node) void {
if (list.first) |first| {
// Insert before first.
list.insertBefore(first, new_node);
} else {
// Empty list.
list.first = new_node;
list.last = new_node;
new_node.prev = null;
new_node.next = null;
list.len = 1;
}
}
/// Remove a node from the list.
///
/// Arguments:
/// node: Pointer to the node to be removed.
pub fn remove(list: *Self, node: *Node) void {
if (node.prev) |prev_node| {
// Intermediate node.
prev_node.next = node.next;
} else {
// First element of the list.
list.first = node.next;
}
if (node.next) |next_node| {
// Intermediate node.
next_node.prev = node.prev;
} else {
// Last element of the list.
list.last = node.prev;
}
list.len -= 1;
assert(list.len == 0 or (list.first != null and list.last != null));
}
/// Remove and return the last node in the list.
///
/// Returns:
/// A pointer to the last node in the list.
pub fn pop(list: *Self) ?*Node {
const last = list.last orelse return null;
list.remove(last);
return last;
}
/// Remove and return the first node in the list.
///
/// Returns:
/// A pointer to the first node in the list.
pub fn popFirst(list: *Self) ?*Node {
const first = list.first orelse return null;
list.remove(first);
return first;
}
};
}
test "basic TailQueue test" {
const L = TailQueue(u32);
var list = L{};
var one = L.Node{ .data = 1 };
var two = L.Node{ .data = 2 };
var three = L.Node{ .data = 3 };
var four = L.Node{ .data = 4 };
var five = L.Node{ .data = 5 };
list.append(&two); // {2}
list.append(&five); // {2, 5}
list.prepend(&one); // {1, 2, 5}
list.insertBefore(&five, &four); // {1, 2, 4, 5}
list.insertAfter(&two, &three); // {1, 2, 3, 4, 5}
// Traverse forwards.
{
var it = list.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
try testing.expect(node.data == index);
index += 1;
}
}
// Traverse backwards.
{
var it = list.last;
var index: u32 = 1;
while (it) |node| : (it = node.prev) {
try testing.expect(node.data == (6 - index));
index += 1;
}
}
_ = list.popFirst(); // {2, 3, 4, 5}
_ = list.pop(); // {2, 3, 4}
list.remove(&three); // {2, 4}
try testing.expect(list.first.?.data == 2);
try testing.expect(list.last.?.data == 4);
try testing.expect(list.len == 2);
}
test "TailQueue concatenation" {
const L = TailQueue(u32);
var list1 = L{};
var list2 = L{};
var one = L.Node{ .data = 1 };
var two = L.Node{ .data = 2 };
var three = L.Node{ .data = 3 };
var four = L.Node{ .data = 4 };
var five = L.Node{ .data = 5 };
list1.append(&one);
list1.append(&two);
list2.append(&three);
list2.append(&four);
list2.append(&five);
list1.concatByMoving(&list2);
try testing.expect(list1.last == &five);
try testing.expect(list1.len == 5);
try testing.expect(list2.first == null);
try testing.expect(list2.last == null);
try testing.expect(list2.len == 0);
// Traverse forwards.
{
var it = list1.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
try testing.expect(node.data == index);
index += 1;
}
}
// Traverse backwards.
{
var it = list1.last;
var index: u32 = 1;
while (it) |node| : (it = node.prev) {
try testing.expect(node.data == (6 - index));
index += 1;
}
}
// Swap them back, this verifies that concating to an empty list works.
list2.concatByMoving(&list1);
// Traverse forwards.
{
var it = list2.first;
var index: u32 = 1;
while (it) |node| : (it = node.next) {
try testing.expect(node.data == index);
index += 1;
}
}
// Traverse backwards.
{
var it = list2.last;
var index: u32 = 1;
while (it) |node| : (it = node.prev) {
try testing.expect(node.data == (6 - index));
index += 1;
}
}
}