zig/lib/compiler_rt/tan.zig
Andrew Kelley 0556a2ba53 compiler-rt: finish cleanups
Finishes cleanups that I started in other commits in this branch.

 * Use common.linkage for all exports instead of redoing the logic in
   each file.
 * Remove pointless `@setRuntimeSafety` calls.
 * Avoid redundantly exporting multiple versions of functions. For
   example, if PPC wants `ceilf128` then don't also export `ceilq`;
   similarly if ARM wants `__aeabi_ddiv` then don't also export
   `__divdf3`.
 * Use `inline` for helper functions instead of making inline calls at
   callsites.
2022-06-17 18:10:00 -07:00

168 lines
5.4 KiB
Zig

//! Ported from musl, which is licensed under the MIT license:
//! https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//!
//! https://git.musl-libc.org/cgit/musl/tree/src/math/tanf.c
//! https://git.musl-libc.org/cgit/musl/tree/src/math/tan.c
//! https://golang.org/src/math/tan.go
const std = @import("std");
const builtin = @import("builtin");
const math = std.math;
const expect = std.testing.expect;
const kernel = @import("trig.zig");
const rem_pio2 = @import("rem_pio2.zig").rem_pio2;
const rem_pio2f = @import("rem_pio2f.zig").rem_pio2f;
const arch = builtin.cpu.arch;
const common = @import("common.zig");
pub const panic = common.panic;
comptime {
@export(__tanh, .{ .name = "__tanh", .linkage = common.linkage });
@export(tanf, .{ .name = "tanf", .linkage = common.linkage });
@export(tan, .{ .name = "tan", .linkage = common.linkage });
@export(__tanx, .{ .name = "__tanx", .linkage = common.linkage });
const tanq_sym_name = if (common.want_ppc_abi) "tanf128" else "tanq";
@export(tanq, .{ .name = tanq_sym_name, .linkage = common.linkage });
@export(tanl, .{ .name = "tanl", .linkage = common.linkage });
}
pub fn __tanh(x: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, tanf(x));
}
pub fn tanf(x: f32) callconv(.C) f32 {
// Small multiples of pi/2 rounded to double precision.
const t1pio2: f64 = 1.0 * math.pi / 2.0; // 0x3FF921FB, 0x54442D18
const t2pio2: f64 = 2.0 * math.pi / 2.0; // 0x400921FB, 0x54442D18
const t3pio2: f64 = 3.0 * math.pi / 2.0; // 0x4012D97C, 0x7F3321D2
const t4pio2: f64 = 4.0 * math.pi / 2.0; // 0x401921FB, 0x54442D18
var ix = @bitCast(u32, x);
const sign = ix >> 31 != 0;
ix &= 0x7fffffff;
if (ix <= 0x3f490fda) { // |x| ~<= pi/4
if (ix < 0x39800000) { // |x| < 2**-12
// raise inexact if x!=0 and underflow if subnormal
math.doNotOptimizeAway(if (ix < 0x00800000) x / 0x1p120 else x + 0x1p120);
return x;
}
return kernel.__tandf(x, false);
}
if (ix <= 0x407b53d1) { // |x| ~<= 5*pi/4
if (ix <= 0x4016cbe3) { // |x| ~<= 3pi/4
return kernel.__tandf((if (sign) x + t1pio2 else x - t1pio2), true);
} else {
return kernel.__tandf((if (sign) x + t2pio2 else x - t2pio2), false);
}
}
if (ix <= 0x40e231d5) { // |x| ~<= 9*pi/4
if (ix <= 0x40afeddf) { // |x| ~<= 7*pi/4
return kernel.__tandf((if (sign) x + t3pio2 else x - t3pio2), true);
} else {
return kernel.__tandf((if (sign) x + t4pio2 else x - t4pio2), false);
}
}
// tan(Inf or NaN) is NaN
if (ix >= 0x7f800000) {
return x - x;
}
var y: f64 = undefined;
const n = rem_pio2f(x, &y);
return kernel.__tandf(y, n & 1 != 0);
}
pub fn tan(x: f64) callconv(.C) f64 {
var ix = @bitCast(u64, x) >> 32;
ix &= 0x7fffffff;
// |x| ~< pi/4
if (ix <= 0x3fe921fb) {
if (ix < 0x3e400000) { // |x| < 2**-27
// raise inexact if x!=0 and underflow if subnormal
math.doNotOptimizeAway(if (ix < 0x00100000) x / 0x1p120 else x + 0x1p120);
return x;
}
return kernel.__tan(x, 0.0, false);
}
// tan(Inf or NaN) is NaN
if (ix >= 0x7ff00000) {
return x - x;
}
var y: [2]f64 = undefined;
const n = rem_pio2(x, &y);
return kernel.__tan(y[0], y[1], n & 1 != 0);
}
pub fn __tanx(x: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, tanq(x));
}
pub fn tanq(x: f128) callconv(.C) f128 {
// TODO: more correct implementation
return tan(@floatCast(f64, x));
}
pub fn tanl(x: c_longdouble) callconv(.C) c_longdouble {
switch (@typeInfo(c_longdouble).Float.bits) {
16 => return __tanh(x),
32 => return tanf(x),
64 => return tan(x),
80 => return __tanx(x),
128 => return tanq(x),
else => @compileError("unreachable"),
}
}
test "tan" {
try expect(tan(@as(f32, 0.0)) == tanf(0.0));
try expect(tan(@as(f64, 0.0)) == tan(0.0));
}
test "tan32" {
const epsilon = 0.00001;
try expect(math.approxEqAbs(f32, tanf(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f32, tanf(0.2), 0.202710, epsilon));
try expect(math.approxEqAbs(f32, tanf(0.8923), 1.240422, epsilon));
try expect(math.approxEqAbs(f32, tanf(1.5), 14.101420, epsilon));
try expect(math.approxEqAbs(f32, tanf(37.45), -0.254397, epsilon));
try expect(math.approxEqAbs(f32, tanf(89.123), 2.285852, epsilon));
}
test "tan64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, tan(0.0), 0.0, epsilon));
try expect(math.approxEqAbs(f64, tan(0.2), 0.202710, epsilon));
try expect(math.approxEqAbs(f64, tan(0.8923), 1.240422, epsilon));
try expect(math.approxEqAbs(f64, tan(1.5), 14.101420, epsilon));
try expect(math.approxEqAbs(f64, tan(37.45), -0.254397, epsilon));
try expect(math.approxEqAbs(f64, tan(89.123), 2.2858376, epsilon));
}
test "tan32.special" {
try expect(tanf(0.0) == 0.0);
try expect(tanf(-0.0) == -0.0);
try expect(math.isNan(tanf(math.inf(f32))));
try expect(math.isNan(tanf(-math.inf(f32))));
try expect(math.isNan(tanf(math.nan(f32))));
}
test "tan64.special" {
try expect(tan(0.0) == 0.0);
try expect(tan(-0.0) == -0.0);
try expect(math.isNan(tan(math.inf(f64))));
try expect(math.isNan(tan(-math.inf(f64))));
try expect(math.isNan(tan(math.nan(f64))));
}