zig/std/math/complex/tanh.zig
Andrew Kelley fcbb7426fa use * for pointer type instead of &
See #770

To help automatically translate code, see the
zig-fmt-pointer-reform-2 branch.

This will convert all & into *. Due to the syntax
ambiguity (which is why we are making this change),
even address-of & will turn into *, so you'll have
to manually fix thes instances. You will be guaranteed
to get compile errors for them - expected 'type', found 'foo'
2018-05-31 17:28:07 -04:00

112 lines
3.0 KiB
Zig

const std = @import("../../index.zig");
const debug = std.debug;
const math = std.math;
const cmath = math.complex;
const Complex = cmath.Complex;
pub fn tanh(z: var) Complex(@typeOf(z.re)) {
const T = @typeOf(z.re);
return switch (T) {
f32 => tanh32(z),
f64 => tanh64(z),
else => @compileError("tan not implemented for " ++ @typeName(z)),
};
}
fn tanh32(z: *const Complex(f32)) Complex(f32) {
const x = z.re;
const y = z.im;
const hx = @bitCast(u32, x);
const ix = hx & 0x7fffffff;
if (ix >= 0x7f800000) {
if (ix & 0x7fffff != 0) {
const r = if (y == 0) y else x * y;
return Complex(f32).new(x, r);
}
const xx = @bitCast(f32, hx - 0x40000000);
const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y);
return Complex(f32).new(xx, math.copysign(f32, 0, r));
}
if (!math.isFinite(y)) {
const r = if (ix != 0) y - y else x;
return Complex(f32).new(r, y - y);
}
// x >= 11
if (ix >= 0x41300000) {
const exp_mx = math.exp(-math.fabs(x));
return Complex(f32).new(math.copysign(f32, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
}
// Kahan's algorithm
const t = math.tan(y);
const beta = 1.0 + t * t;
const s = math.sinh(x);
const rho = math.sqrt(1 + s * s);
const den = 1 + beta * s * s;
return Complex(f32).new((beta * rho * s) / den, t / den);
}
fn tanh64(z: *const Complex(f64)) Complex(f64) {
const x = z.re;
const y = z.im;
const fx = @bitCast(u64, x);
const hx = u32(fx >> 32);
const lx = @truncate(u32, fx);
const ix = hx & 0x7fffffff;
if (ix >= 0x7ff00000) {
if ((ix & 0x7fffff) | lx != 0) {
const r = if (y == 0) y else x * y;
return Complex(f64).new(x, r);
}
const xx = @bitCast(f64, (u64(hx - 0x40000000) << 32) | lx);
const r = if (math.isInf(y)) y else math.sin(y) * math.cos(y);
return Complex(f64).new(xx, math.copysign(f64, 0, r));
}
if (!math.isFinite(y)) {
const r = if (ix != 0) y - y else x;
return Complex(f64).new(r, y - y);
}
// x >= 22
if (ix >= 0x40360000) {
const exp_mx = math.exp(-math.fabs(x));
return Complex(f64).new(math.copysign(f64, 1, x), 4 * math.sin(y) * math.cos(y) * exp_mx * exp_mx);
}
// Kahan's algorithm
const t = math.tan(y);
const beta = 1.0 + t * t;
const s = math.sinh(x);
const rho = math.sqrt(1 + s * s);
const den = 1 + beta * s * s;
return Complex(f64).new((beta * rho * s) / den, t / den);
}
const epsilon = 0.0001;
test "complex.ctanh32" {
const a = Complex(f32).new(5, 3);
const c = tanh(a);
debug.assert(math.approxEq(f32, c.re, 0.999913, epsilon));
debug.assert(math.approxEq(f32, c.im, -0.000025, epsilon));
}
test "complex.ctanh64" {
const a = Complex(f64).new(5, 3);
const c = tanh(a);
debug.assert(math.approxEq(f64, c.re, 0.999913, epsilon));
debug.assert(math.approxEq(f64, c.im, -0.000025, epsilon));
}