zig/test/cases/cast.zig
Andrew Kelley f8fe517d12
better string literal caching implementation
We were caching the ConstExprValue of string literals,
which works if you can never modify ConstExprValues.
This premise is broken with `comptime var ...`.

So I implemented an optimization in ConstExprValue
arrays, where it stores a `Buf *` directly rather
than an array of ConstExprValues for the elements,
and then similar to array of undefined, it is
expanded into the canonical form when necessary.
However many operations can happen directly on the
`Buf *`, which is faster.

Furthermore, before a ConstExprValue array is expanded
into canonical form, it removes itself from the string
literal cache. This fixes the issue, because before an
array element is modified it would have to be expanded.

closes #1076
2018-09-20 11:04:31 -04:00

540 lines
14 KiB
Zig

const std = @import("std");
const assert = std.debug.assert;
const mem = std.mem;
test "int to ptr cast" {
const x = usize(13);
const y = @intToPtr(*u8, x);
const z = @ptrToInt(y);
assert(z == 13);
}
test "integer literal to pointer cast" {
const vga_mem = @intToPtr(*u16, 0xB8000);
assert(@ptrToInt(vga_mem) == 0xB8000);
}
test "pointer reinterpret const float to int" {
const float: f64 = 5.99999999999994648725e-01;
const float_ptr = &float;
const int_ptr = @ptrCast(*const i32, float_ptr);
const int_val = int_ptr.*;
assert(int_val == 858993411);
}
test "implicitly cast a pointer to a const pointer of it" {
var x: i32 = 1;
const xp = &x;
funcWithConstPtrPtr(xp);
assert(x == 2);
}
fn funcWithConstPtrPtr(x: *const *i32) void {
x.*.* += 1;
}
test "implicitly cast a container to a const pointer of it" {
const z = Struct(void){ .x = void{} };
assert(0 == @sizeOf(@typeOf(z)));
assert(void{} == Struct(void).pointer(z).x);
assert(void{} == Struct(void).pointer(&z).x);
assert(void{} == Struct(void).maybePointer(z).x);
assert(void{} == Struct(void).maybePointer(&z).x);
assert(void{} == Struct(void).maybePointer(null).x);
const s = Struct(u8){ .x = 42 };
assert(0 != @sizeOf(@typeOf(s)));
assert(42 == Struct(u8).pointer(s).x);
assert(42 == Struct(u8).pointer(&s).x);
assert(42 == Struct(u8).maybePointer(s).x);
assert(42 == Struct(u8).maybePointer(&s).x);
assert(0 == Struct(u8).maybePointer(null).x);
const u = Union{ .x = 42 };
assert(42 == Union.pointer(u).x);
assert(42 == Union.pointer(&u).x);
assert(42 == Union.maybePointer(u).x);
assert(42 == Union.maybePointer(&u).x);
assert(0 == Union.maybePointer(null).x);
const e = Enum.Some;
assert(Enum.Some == Enum.pointer(e));
assert(Enum.Some == Enum.pointer(&e));
assert(Enum.Some == Enum.maybePointer(e));
assert(Enum.Some == Enum.maybePointer(&e));
assert(Enum.None == Enum.maybePointer(null));
}
fn Struct(comptime T: type) type {
return struct {
const Self = @This();
x: T,
fn pointer(self: *const Self) Self {
return self.*;
}
fn maybePointer(self: ?*const Self) Self {
const none = Self{ .x = if (T == void) void{} else 0 };
return (self orelse &none).*;
}
};
}
const Union = union {
x: u8,
fn pointer(self: *const Union) Union {
return self.*;
}
fn maybePointer(self: ?*const Union) Union {
const none = Union{ .x = 0 };
return (self orelse &none).*;
}
};
const Enum = enum {
None,
Some,
fn pointer(self: *const Enum) Enum {
return self.*;
}
fn maybePointer(self: ?*const Enum) Enum {
return (self orelse &Enum.None).*;
}
};
test "implicitly cast indirect pointer to maybe-indirect pointer" {
const S = struct {
const Self = @This();
x: u8,
fn constConst(p: *const *const Self) u8 {
return p.*.x;
}
fn maybeConstConst(p: ?*const *const Self) u8 {
return p.?.*.x;
}
fn constConstConst(p: *const *const *const Self) u8 {
return p.*.*.x;
}
fn maybeConstConstConst(p: ?*const *const *const Self) u8 {
return p.?.*.*.x;
}
};
const s = S{ .x = 42 };
const p = &s;
const q = &p;
const r = &q;
assert(42 == S.constConst(p));
assert(42 == S.constConst(q));
assert(42 == S.maybeConstConst(p));
assert(42 == S.maybeConstConst(q));
assert(42 == S.constConstConst(q));
assert(42 == S.constConstConst(r));
assert(42 == S.maybeConstConstConst(q));
assert(42 == S.maybeConstConstConst(r));
}
test "explicit cast from integer to error type" {
testCastIntToErr(error.ItBroke);
comptime testCastIntToErr(error.ItBroke);
}
fn testCastIntToErr(err: error) void {
const x = @errorToInt(err);
const y = @intToError(x);
assert(error.ItBroke == y);
}
test "peer resolve arrays of different size to const slice" {
assert(mem.eql(u8, boolToStr(true), "true"));
assert(mem.eql(u8, boolToStr(false), "false"));
comptime assert(mem.eql(u8, boolToStr(true), "true"));
comptime assert(mem.eql(u8, boolToStr(false), "false"));
}
fn boolToStr(b: bool) []const u8 {
return if (b) "true" else "false";
}
test "peer resolve array and const slice" {
testPeerResolveArrayConstSlice(true);
comptime testPeerResolveArrayConstSlice(true);
}
fn testPeerResolveArrayConstSlice(b: bool) void {
const value1 = if (b) "aoeu" else ([]const u8)("zz");
const value2 = if (b) ([]const u8)("zz") else "aoeu";
assert(mem.eql(u8, value1, "aoeu"));
assert(mem.eql(u8, value2, "zz"));
}
test "integer literal to &const int" {
const x: *const i32 = 3;
assert(x.* == 3);
}
test "string literal to &const []const u8" {
const x: *const []const u8 = "hello";
assert(mem.eql(u8, x.*, "hello"));
}
test "implicitly cast from T to error!?T" {
castToOptionalTypeError(1);
comptime castToOptionalTypeError(1);
}
const A = struct {
a: i32,
};
fn castToOptionalTypeError(z: i32) void {
const x = i32(1);
const y: error!?i32 = x;
assert((try y).? == 1);
const f = z;
const g: error!?i32 = f;
const a = A{ .a = z };
const b: error!?A = a;
assert((b catch unreachable).?.a == 1);
}
test "implicitly cast from int to error!?T" {
implicitIntLitToOptional();
comptime implicitIntLitToOptional();
}
fn implicitIntLitToOptional() void {
const f: ?i32 = 1;
const g: error!?i32 = 1;
}
test "return null from fn() error!?&T" {
const a = returnNullFromOptionalTypeErrorRef();
const b = returnNullLitFromOptionalTypeErrorRef();
assert((try a) == null and (try b) == null);
}
fn returnNullFromOptionalTypeErrorRef() error!?*A {
const a: ?*A = null;
return a;
}
fn returnNullLitFromOptionalTypeErrorRef() error!?*A {
return null;
}
test "peer type resolution: ?T and T" {
assert(peerTypeTAndOptionalT(true, false).? == 0);
assert(peerTypeTAndOptionalT(false, false).? == 3);
comptime {
assert(peerTypeTAndOptionalT(true, false).? == 0);
assert(peerTypeTAndOptionalT(false, false).? == 3);
}
}
fn peerTypeTAndOptionalT(c: bool, b: bool) ?usize {
if (c) {
return if (b) null else usize(0);
}
return usize(3);
}
test "peer type resolution: [0]u8 and []const u8" {
assert(peerTypeEmptyArrayAndSlice(true, "hi").len == 0);
assert(peerTypeEmptyArrayAndSlice(false, "hi").len == 1);
comptime {
assert(peerTypeEmptyArrayAndSlice(true, "hi").len == 0);
assert(peerTypeEmptyArrayAndSlice(false, "hi").len == 1);
}
}
fn peerTypeEmptyArrayAndSlice(a: bool, slice: []const u8) []const u8 {
if (a) {
return []const u8{};
}
return slice[0..1];
}
test "implicitly cast from [N]T to ?[]const T" {
assert(mem.eql(u8, castToOptionalSlice().?, "hi"));
comptime assert(mem.eql(u8, castToOptionalSlice().?, "hi"));
}
fn castToOptionalSlice() ?[]const u8 {
return "hi";
}
test "implicitly cast from [0]T to error![]T" {
testCastZeroArrayToErrSliceMut();
comptime testCastZeroArrayToErrSliceMut();
}
fn testCastZeroArrayToErrSliceMut() void {
assert((gimmeErrOrSlice() catch unreachable).len == 0);
}
fn gimmeErrOrSlice() error![]u8 {
return []u8{};
}
test "peer type resolution: [0]u8, []const u8, and error![]u8" {
{
var data = "hi";
const slice = data[0..];
assert((try peerTypeEmptyArrayAndSliceAndError(true, slice)).len == 0);
assert((try peerTypeEmptyArrayAndSliceAndError(false, slice)).len == 1);
}
comptime {
var data = "hi";
const slice = data[0..];
assert((try peerTypeEmptyArrayAndSliceAndError(true, slice)).len == 0);
assert((try peerTypeEmptyArrayAndSliceAndError(false, slice)).len == 1);
}
}
fn peerTypeEmptyArrayAndSliceAndError(a: bool, slice: []u8) error![]u8 {
if (a) {
return []u8{};
}
return slice[0..1];
}
test "resolve undefined with integer" {
testResolveUndefWithInt(true, 1234);
comptime testResolveUndefWithInt(true, 1234);
}
fn testResolveUndefWithInt(b: bool, x: i32) void {
const value = if (b) x else undefined;
if (b) {
assert(value == x);
}
}
test "implicit cast from &const [N]T to []const T" {
testCastConstArrayRefToConstSlice();
comptime testCastConstArrayRefToConstSlice();
}
fn testCastConstArrayRefToConstSlice() void {
const blah = "aoeu";
const const_array_ref = &blah;
assert(@typeOf(const_array_ref) == *const [4]u8);
const slice: []const u8 = const_array_ref;
assert(mem.eql(u8, slice, "aoeu"));
}
test "peer type resolution: error and [N]T" {
// TODO: implicit error!T to error!U where T can implicitly cast to U
//assert(mem.eql(u8, try testPeerErrorAndArray(0), "OK"));
//comptime assert(mem.eql(u8, try testPeerErrorAndArray(0), "OK"));
assert(mem.eql(u8, try testPeerErrorAndArray2(1), "OKK"));
comptime assert(mem.eql(u8, try testPeerErrorAndArray2(1), "OKK"));
}
//fn testPeerErrorAndArray(x: u8) error![]const u8 {
// return switch (x) {
// 0x00 => "OK",
// else => error.BadValue,
// };
//}
fn testPeerErrorAndArray2(x: u8) error![]const u8 {
return switch (x) {
0x00 => "OK",
0x01 => "OKK",
else => error.BadValue,
};
}
test "@floatToInt" {
testFloatToInts();
comptime testFloatToInts();
}
fn testFloatToInts() void {
const x = i32(1e4);
assert(x == 10000);
const y = @floatToInt(i32, f32(1e4));
assert(y == 10000);
expectFloatToInt(f16, 255.1, u8, 255);
expectFloatToInt(f16, 127.2, i8, 127);
expectFloatToInt(f16, -128.2, i8, -128);
expectFloatToInt(f32, 255.1, u8, 255);
expectFloatToInt(f32, 127.2, i8, 127);
expectFloatToInt(f32, -128.2, i8, -128);
expectFloatToInt(comptime_int, 1234, i16, 1234);
}
fn expectFloatToInt(comptime F: type, f: F, comptime I: type, i: I) void {
assert(@floatToInt(I, f) == i);
}
test "cast u128 to f128 and back" {
comptime testCast128();
testCast128();
}
fn testCast128() void {
assert(cast128Int(cast128Float(0x7fff0000000000000000000000000000)) == 0x7fff0000000000000000000000000000);
}
fn cast128Int(x: f128) u128 {
return @bitCast(u128, x);
}
fn cast128Float(x: u128) f128 {
return @bitCast(f128, x);
}
test "const slice widen cast" {
const bytes align(4) = []u8{
0x12,
0x12,
0x12,
0x12,
};
const u32_value = @bytesToSlice(u32, bytes[0..])[0];
assert(u32_value == 0x12121212);
assert(@bitCast(u32, bytes) == 0x12121212);
}
test "single-item pointer of array to slice and to unknown length pointer" {
testCastPtrOfArrayToSliceAndPtr();
comptime testCastPtrOfArrayToSliceAndPtr();
}
fn testCastPtrOfArrayToSliceAndPtr() void {
var array = "aoeu";
const x: [*]u8 = &array;
x[0] += 1;
assert(mem.eql(u8, array[0..], "boeu"));
const y: []u8 = &array;
y[0] += 1;
assert(mem.eql(u8, array[0..], "coeu"));
}
test "cast *[1][*]const u8 to [*]const ?[*]const u8" {
const window_name = [1][*]const u8{c"window name"};
const x: [*]const ?[*]const u8 = &window_name;
assert(mem.eql(u8, std.cstr.toSliceConst(x[0].?), "window name"));
}
test "@intCast comptime_int" {
const result = @intCast(i32, 1234);
assert(@typeOf(result) == i32);
assert(result == 1234);
}
test "@floatCast comptime_int and comptime_float" {
{
const result = @floatCast(f16, 1234);
assert(@typeOf(result) == f16);
assert(result == 1234.0);
}
{
const result = @floatCast(f16, 1234.0);
assert(@typeOf(result) == f16);
assert(result == 1234.0);
}
{
const result = @floatCast(f32, 1234);
assert(@typeOf(result) == f32);
assert(result == 1234.0);
}
{
const result = @floatCast(f32, 1234.0);
assert(@typeOf(result) == f32);
assert(result == 1234.0);
}
}
test "comptime_int @intToFloat" {
{
const result = @intToFloat(f16, 1234);
assert(@typeOf(result) == f16);
assert(result == 1234.0);
}
{
const result = @intToFloat(f32, 1234);
assert(@typeOf(result) == f32);
assert(result == 1234.0);
}
}
test "@bytesToSlice keeps pointer alignment" {
var bytes = []u8{ 0x01, 0x02, 0x03, 0x04 };
const numbers = @bytesToSlice(u32, bytes[0..]);
comptime assert(@typeOf(numbers) == []align(@alignOf(@typeOf(bytes))) u32);
}
test "@intCast i32 to u7" {
var x: u128 = @maxValue(u128);
var y: i32 = 120;
var z = x >> @intCast(u7, y);
assert(z == 0xff);
}
test "implicit cast undefined to optional" {
assert(MakeType(void).getNull() == null);
assert(MakeType(void).getNonNull() != null);
}
fn MakeType(comptime T: type) type {
return struct {
fn getNull() ?T {
return null;
}
fn getNonNull() ?T {
return T(undefined);
}
};
}
test "implicit cast from *[N]T to ?[*]T" {
var x: ?[*]u16 = null;
var y: [4]u16 = [4]u16{ 0, 1, 2, 3 };
x = &y;
assert(std.mem.eql(u16, x.?[0..4], y[0..4]));
x.?[0] = 8;
y[3] = 6;
assert(std.mem.eql(u16, x.?[0..4], y[0..4]));
}
test "implicit cast from *T to ?*c_void" {
var a: u8 = 1;
incrementVoidPtrValue(&a);
std.debug.assert(a == 2);
}
fn incrementVoidPtrValue(value: ?*c_void) void {
@ptrCast(*u8, value.?).* += 1;
}
test "implicit cast from [*]T to ?*c_void" {
var a = []u8{ 3, 2, 1 };
incrementVoidPtrArray(a[0..].ptr, 3);
assert(std.mem.eql(u8, a, []u8{ 4, 3, 2 }));
}
fn incrementVoidPtrArray(array: ?*c_void, len: usize) void {
var n: usize = 0;
while (n < len) : (n += 1) {
@ptrCast([*]u8, array.?)[n] += 1;
}
}
test "*usize to *void" {
var i = usize(0);
var v = @ptrCast(*void, &i);
v.* = {};
}
test "compile time int to ptr of function" {
foobar(FUNCTION_CONSTANT);
}
pub const FUNCTION_CONSTANT = @intToPtr(PFN_void, @maxValue(usize));
pub const PFN_void = extern fn (*c_void) void;
fn foobar(func: PFN_void) void {
std.debug.assert(@ptrToInt(func) == @maxValue(usize));
}