zig/lib/compiler_rt/log2.zig
Andrew Kelley cd019ee502 compiler_rt: avoid weak aliases on Windows
When exporting math functions for Windows, we provide weak exports of
'l' variants rather than weak aliases. We still use aliases on other
operating systems so that the 'l' variants have one less jump
instruction in this case.
2022-05-08 13:06:21 -07:00

197 lines
5.6 KiB
Zig

// Ported from musl, which is licensed under the MIT license:
// https://git.musl-libc.org/cgit/musl/tree/COPYRIGHT
//
// https://git.musl-libc.org/cgit/musl/tree/src/math/log2f.c
// https://git.musl-libc.org/cgit/musl/tree/src/math/log2.c
const std = @import("std");
const math = std.math;
const expect = std.testing.expect;
const maxInt = std.math.maxInt;
pub fn __log2h(a: f16) callconv(.C) f16 {
// TODO: more efficient implementation
return @floatCast(f16, log2f(a));
}
pub fn log2f(x_: f32) callconv(.C) f32 {
const ivln2hi: f32 = 1.4428710938e+00;
const ivln2lo: f32 = -1.7605285393e-04;
const Lg1: f32 = 0xaaaaaa.0p-24;
const Lg2: f32 = 0xccce13.0p-25;
const Lg3: f32 = 0x91e9ee.0p-25;
const Lg4: f32 = 0xf89e26.0p-26;
var x = x_;
var u = @bitCast(u32, x);
var ix = u;
var k: i32 = 0;
// x < 2^(-126)
if (ix < 0x00800000 or ix >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f32);
}
// log(-#) = nan
if (ix >> 31 != 0) {
return math.nan(f32);
}
k -= 25;
x *= 0x1.0p25;
ix = @bitCast(u32, x);
} else if (ix >= 0x7F800000) {
return x;
} else if (ix == 0x3F800000) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
ix += 0x3F800000 - 0x3F3504F3;
k += @intCast(i32, ix >> 23) - 0x7F;
ix = (ix & 0x007FFFFF) + 0x3F3504F3;
x = @bitCast(f32, ix);
const f = x - 1.0;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * Lg4);
const t2 = z * (Lg1 + w * Lg3);
const R = t2 + t1;
const hfsq = 0.5 * f * f;
var hi = f - hfsq;
u = @bitCast(u32, hi);
u &= 0xFFFFF000;
hi = @bitCast(f32, u);
const lo = f - hi - hfsq + s * (hfsq + R);
return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + @intToFloat(f32, k);
}
pub fn log2(x_: f64) callconv(.C) f64 {
const ivln2hi: f64 = 1.44269504072144627571e+00;
const ivln2lo: f64 = 1.67517131648865118353e-10;
const Lg1: f64 = 6.666666666666735130e-01;
const Lg2: f64 = 3.999999999940941908e-01;
const Lg3: f64 = 2.857142874366239149e-01;
const Lg4: f64 = 2.222219843214978396e-01;
const Lg5: f64 = 1.818357216161805012e-01;
const Lg6: f64 = 1.531383769920937332e-01;
const Lg7: f64 = 1.479819860511658591e-01;
var x = x_;
var ix = @bitCast(u64, x);
var hx = @intCast(u32, ix >> 32);
var k: i32 = 0;
if (hx < 0x00100000 or hx >> 31 != 0) {
// log(+-0) = -inf
if (ix << 1 == 0) {
return -math.inf(f64);
}
// log(-#) = nan
if (hx >> 31 != 0) {
return math.nan(f64);
}
// subnormal, scale x
k -= 54;
x *= 0x1.0p54;
hx = @intCast(u32, @bitCast(u64, x) >> 32);
} else if (hx >= 0x7FF00000) {
return x;
} else if (hx == 0x3FF00000 and ix << 32 == 0) {
return 0;
}
// x into [sqrt(2) / 2, sqrt(2)]
hx += 0x3FF00000 - 0x3FE6A09E;
k += @intCast(i32, hx >> 20) - 0x3FF;
hx = (hx & 0x000FFFFF) + 0x3FE6A09E;
ix = (@as(u64, hx) << 32) | (ix & 0xFFFFFFFF);
x = @bitCast(f64, ix);
const f = x - 1.0;
const hfsq = 0.5 * f * f;
const s = f / (2.0 + f);
const z = s * s;
const w = z * z;
const t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
const t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
const R = t2 + t1;
// hi + lo = f - hfsq + s * (hfsq + R) ~ log(1 + f)
var hi = f - hfsq;
var hii = @bitCast(u64, hi);
hii &= @as(u64, maxInt(u64)) << 32;
hi = @bitCast(f64, hii);
const lo = f - hi - hfsq + s * (hfsq + R);
var val_hi = hi * ivln2hi;
var val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
// spadd(val_hi, val_lo, y)
const y = @intToFloat(f64, k);
const ww = y + val_hi;
val_lo += (y - ww) + val_hi;
val_hi = ww;
return val_lo + val_hi;
}
pub fn __log2x(a: f80) callconv(.C) f80 {
// TODO: more efficient implementation
return @floatCast(f80, log2q(a));
}
pub fn log2q(a: f128) callconv(.C) f128 {
return math.log2(a);
}
pub fn log2l(x: c_longdouble) callconv(.C) c_longdouble {
switch (@typeInfo(c_longdouble).Float.bits) {
16 => return __log2h(x),
32 => return log2f(x),
64 => return log2(x),
80 => return __log2x(x),
128 => return log2q(x),
else => @compileError("unreachable"),
}
}
test "log2_32" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f32, log2f(0.2), -2.321928, epsilon));
try expect(math.approxEqAbs(f32, log2f(0.8923), -0.164399, epsilon));
try expect(math.approxEqAbs(f32, log2f(1.5), 0.584962, epsilon));
try expect(math.approxEqAbs(f32, log2f(37.45), 5.226894, epsilon));
try expect(math.approxEqAbs(f32, log2f(123123.234375), 16.909744, epsilon));
}
test "log2_64" {
const epsilon = 0.000001;
try expect(math.approxEqAbs(f64, log2(0.2), -2.321928, epsilon));
try expect(math.approxEqAbs(f64, log2(0.8923), -0.164399, epsilon));
try expect(math.approxEqAbs(f64, log2(1.5), 0.584962, epsilon));
try expect(math.approxEqAbs(f64, log2(37.45), 5.226894, epsilon));
try expect(math.approxEqAbs(f64, log2(123123.234375), 16.909744, epsilon));
}
test "log2_32.special" {
try expect(math.isPositiveInf(log2f(math.inf(f32))));
try expect(math.isNegativeInf(log2f(0.0)));
try expect(math.isNan(log2f(-1.0)));
try expect(math.isNan(log2f(math.nan(f32))));
}
test "log2_64.special" {
try expect(math.isPositiveInf(log2(math.inf(f64))));
try expect(math.isNegativeInf(log2(0.0)));
try expect(math.isNan(log2(-1.0)));
try expect(math.isNan(log2(math.nan(f64))));
}