zig/std/hash/auto_hash.zig

212 lines
6.8 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const mem = std.mem;
const meta = std.meta;
/// Provides generic hashing for any eligible type.
/// Only hashes `key` itself, pointers are not followed.
pub fn autoHash(hasher: var, key: var) void {
const Key = @typeOf(key);
switch (@typeInfo(Key)) {
.NoReturn,
.Opaque,
.Undefined,
.ArgTuple,
.Void,
.Null,
.BoundFn,
.ComptimeFloat,
.ComptimeInt,
.Type,
.EnumLiteral,
.Frame,
=> @compileError("cannot hash this type"),
// Help the optimizer see that hashing an int is easy by inlining!
// TODO Check if the situation is better after #561 is resolved.
.Int => @inlineCall(hasher.update, std.mem.asBytes(&key)),
.Float => |info| autoHash(hasher, @bitCast(@IntType(false, info.bits), key)),
.Bool => autoHash(hasher, @boolToInt(key)),
.Enum => autoHash(hasher, @enumToInt(key)),
.ErrorSet => autoHash(hasher, @errorToInt(key)),
.AnyFrame, .Fn => autoHash(hasher, @ptrToInt(key)),
.Pointer => |info| switch (info.size) {
builtin.TypeInfo.Pointer.Size.One,
builtin.TypeInfo.Pointer.Size.Many,
builtin.TypeInfo.Pointer.Size.C,
=> autoHash(hasher, @ptrToInt(key)),
builtin.TypeInfo.Pointer.Size.Slice => {
autoHash(hasher, key.ptr);
autoHash(hasher, key.len);
},
},
.Optional => if (key) |k| autoHash(hasher, k),
.Array => {
// TODO detect via a trait when Key has no padding bits to
// hash it as an array of bytes.
// Otherwise, hash every element.
for (key) |element| {
autoHash(hasher, element);
}
},
.Vector => |info| {
if (info.child.bit_count % 8 == 0) {
// If there's no unused bits in the child type, we can just hash
// this as an array of bytes.
hasher.update(mem.asBytes(&key));
} else {
// Otherwise, hash every element.
// TODO remove the copy to an array once field access is done.
const array: [info.len]info.child = key;
comptime var i: u32 = 0;
inline while (i < info.len) : (i += 1) {
autoHash(hasher, array[i]);
}
}
},
.Struct => |info| {
// TODO detect via a trait when Key has no padding bits to
// hash it as an array of bytes.
// Otherwise, hash every field.
inline for (info.fields) |field| {
// We reuse the hash of the previous field as the seed for the
// next one so that they're dependant.
autoHash(hasher, @field(key, field.name));
}
},
.Union => |info| blk: {
if (info.tag_type) |tag_type| {
const tag = meta.activeTag(key);
const s = autoHash(hasher, tag);
inline for (info.fields) |field| {
const enum_field = field.enum_field.?;
if (enum_field.value == @enumToInt(tag)) {
autoHash(hasher, @field(key, enum_field.name));
// TODO use a labelled break when it does not crash the compiler.
// break :blk;
return;
}
}
unreachable;
} else @compileError("cannot hash untagged union type: " ++ @typeName(Key) ++ ", provide your own hash function");
},
.ErrorUnion => blk: {
const payload = key catch |err| {
autoHash(hasher, err);
break :blk;
};
autoHash(hasher, payload);
},
}
}
const testing = std.testing;
const Wyhash = std.hash.Wyhash;
fn testAutoHash(key: var) u64 {
// Any hash could be used here, for testing autoHash.
var hasher = Wyhash.init(0);
autoHash(&hasher, key);
return hasher.final();
}
test "autoHash slice" {
// Allocate one array dynamically so that we're assured it is not merged
// with the other by the optimization passes.
const array1 = try std.heap.direct_allocator.create([6]u32);
defer std.heap.direct_allocator.destroy(array1);
array1.* = [_]u32{ 1, 2, 3, 4, 5, 6 };
const array2 = [_]u32{ 1, 2, 3, 4, 5, 6 };
const a = array1[0..];
const b = array2[0..];
const c = array1[0..3];
testing.expect(testAutoHash(a) == testAutoHash(a));
testing.expect(testAutoHash(a) != testAutoHash(array1));
testing.expect(testAutoHash(a) != testAutoHash(b));
testing.expect(testAutoHash(a) != testAutoHash(c));
}
test "testAutoHash optional" {
const a: ?u32 = 123;
const b: ?u32 = null;
testing.expectEqual(testAutoHash(a), testAutoHash(u32(123)));
testing.expect(testAutoHash(a) != testAutoHash(b));
testing.expectEqual(testAutoHash(b), 0);
}
test "testAutoHash array" {
const a = [_]u32{ 1, 2, 3 };
const h = testAutoHash(a);
var hasher = Wyhash.init(0);
autoHash(&hasher, u32(1));
autoHash(&hasher, u32(2));
autoHash(&hasher, u32(3));
testing.expectEqual(h, hasher.final());
}
test "testAutoHash struct" {
const Foo = struct {
a: u32 = 1,
b: u32 = 2,
c: u32 = 3,
};
const f = Foo{};
const h = testAutoHash(f);
var hasher = Wyhash.init(0);
autoHash(&hasher, u32(1));
autoHash(&hasher, u32(2));
autoHash(&hasher, u32(3));
testing.expectEqual(h, hasher.final());
}
test "testAutoHash union" {
const Foo = union(enum) {
A: u32,
B: f32,
C: u32,
};
const a = Foo{ .A = 18 };
var b = Foo{ .B = 12.34 };
const c = Foo{ .C = 18 };
testing.expect(testAutoHash(a) == testAutoHash(a));
testing.expect(testAutoHash(a) != testAutoHash(b));
testing.expect(testAutoHash(a) != testAutoHash(c));
b = Foo{ .A = 18 };
testing.expect(testAutoHash(a) == testAutoHash(b));
}
test "testAutoHash vector" {
const a: @Vector(4, u32) = [_]u32{ 1, 2, 3, 4 };
const b: @Vector(4, u32) = [_]u32{ 1, 2, 3, 5 };
const c: @Vector(4, u31) = [_]u31{ 1, 2, 3, 4 };
testing.expect(testAutoHash(a) == testAutoHash(a));
testing.expect(testAutoHash(a) != testAutoHash(b));
testing.expect(testAutoHash(a) != testAutoHash(c));
}
test "testAutoHash error union" {
const Errors = error{Test};
const Foo = struct {
a: u32 = 1,
b: u32 = 2,
c: u32 = 3,
};
const f = Foo{};
const g: Errors!Foo = Errors.Test;
testing.expect(testAutoHash(f) != testAutoHash(g));
testing.expect(testAutoHash(f) == testAutoHash(Foo{}));
testing.expect(testAutoHash(g) == testAutoHash(Errors.Test));
}