zig/lib/std/target.zig
Andrew Kelley 60cd11bd4b
get rid of std.os.foo.is_the_target
It had the downside of running all the comptime blocks and resolving
all the usingnamespaces of each system, when just trying to discover if
the current system is a particular one.

For Darwin, where it's nice to use `std.Target.current.isDarwin()`, this
demonstrates the utility that #425 would provide.
2019-10-24 01:14:52 -04:00

618 lines
15 KiB
Zig

const std = @import("std.zig");
const builtin = std.builtin;
/// TODO Nearly all the functions in this namespace would be
/// better off if https://github.com/ziglang/zig/issues/425
/// was solved.
pub const Target = union(enum) {
Native: void,
Cross: Cross,
pub const Os = enum {
freestanding,
ananas,
cloudabi,
dragonfly,
freebsd,
fuchsia,
ios,
kfreebsd,
linux,
lv2,
macosx,
netbsd,
openbsd,
solaris,
windows,
haiku,
minix,
rtems,
nacl,
cnk,
aix,
cuda,
nvcl,
amdhsa,
ps4,
elfiamcu,
tvos,
watchos,
mesa3d,
contiki,
amdpal,
hermit,
hurd,
wasi,
emscripten,
zen,
uefi,
};
pub const Arch = union(enum) {
arm: Arm32,
armeb: Arm32,
aarch64: Arm64,
aarch64_be: Arm64,
aarch64_32: Arm64,
arc,
avr,
bpfel,
bpfeb,
hexagon,
mips,
mipsel,
mips64,
mips64el,
msp430,
powerpc,
powerpc64,
powerpc64le,
r600,
amdgcn,
riscv32,
riscv64,
sparc,
sparcv9,
sparcel,
s390x,
tce,
tcele,
thumb: Arm32,
thumbeb: Arm32,
i386,
x86_64,
xcore,
nvptx,
nvptx64,
le32,
le64,
amdil,
amdil64,
hsail,
hsail64,
spir,
spir64,
kalimba: Kalimba,
shave,
lanai,
wasm32,
wasm64,
renderscript32,
renderscript64,
pub const Arm32 = enum {
v8_5a,
v8_4a,
v8_3a,
v8_2a,
v8_1a,
v8,
v8r,
v8m_baseline,
v8m_mainline,
v8_1m_mainline,
v7,
v7em,
v7m,
v7s,
v7k,
v7ve,
v6,
v6m,
v6k,
v6t2,
v5,
v5te,
v4t,
};
pub const Arm64 = enum {
v8_5a,
v8_4a,
v8_3a,
v8_2a,
v8_1a,
v8,
v8r,
v8m_baseline,
v8m_mainline,
};
pub const Kalimba = enum {
v5,
v4,
v3,
};
pub const Mips = enum {
r6,
};
};
pub const Abi = enum {
none,
gnu,
gnuabin32,
gnuabi64,
gnueabi,
gnueabihf,
gnux32,
code16,
eabi,
eabihf,
elfv1,
elfv2,
android,
musl,
musleabi,
musleabihf,
msvc,
itanium,
cygnus,
coreclr,
simulator,
macabi,
};
pub const ObjectFormat = enum {
unknown,
coff,
elf,
macho,
wasm,
};
pub const SubSystem = enum {
Console,
Windows,
Posix,
Native,
EfiApplication,
EfiBootServiceDriver,
EfiRom,
EfiRuntimeDriver,
};
pub const Cross = struct {
arch: Arch,
os: Os,
abi: Abi,
};
pub const current = Target{
.Cross = Cross{
.arch = builtin.arch,
.os = builtin.os,
.abi = builtin.abi,
},
};
pub fn zigTriple(self: Target, allocator: *std.mem.Allocator) ![]u8 {
return std.fmt.allocPrint(
allocator,
"{}{}-{}-{}",
@tagName(self.getArch()),
Target.archSubArchName(self.getArch()),
@tagName(self.getOs()),
@tagName(self.getAbi()),
);
}
pub fn allocDescription(self: Target, allocator: *std.mem.Allocator) ![]u8 {
// TODO is there anything else worthy of the description that is not
// already captured in the triple?
return self.zigTriple(allocator);
}
pub fn zigTripleNoSubArch(self: Target, allocator: *std.mem.Allocator) ![]u8 {
return std.fmt.allocPrint(
allocator,
"{}-{}-{}",
@tagName(self.getArch()),
@tagName(self.getOs()),
@tagName(self.getAbi()),
);
}
pub fn linuxTriple(self: Target, allocator: *std.mem.Allocator) ![]u8 {
return std.fmt.allocPrint(
allocator,
"{}-{}-{}",
@tagName(self.getArch()),
@tagName(self.getOs()),
@tagName(self.getAbi()),
);
}
pub fn parse(text: []const u8) !Target {
var it = mem.separate(text, "-");
const arch_name = it.next() orelse return error.MissingArchitecture;
const os_name = it.next() orelse return error.MissingOperatingSystem;
const abi_name = it.next();
var cross = Cross{
.arch = try parseArchSub(arch_name),
.os = try parseOs(os_name),
.abi = undefined,
};
cross.abi = if (abi_name) |n| try parseAbi(n) else defaultAbi(cross.arch, cross.os);
return Target{ .Cross = cross };
}
pub fn defaultAbi(arch: Arch, target_os: Os) Abi {
switch (arch) {
.wasm32, .wasm64 => return .musl,
else => {},
}
switch (target_os) {
.freestanding,
.ananas,
.cloudabi,
.dragonfly,
.lv2,
.solaris,
.haiku,
.minix,
.rtems,
.nacl,
.cnk,
.aix,
.cuda,
.nvcl,
.amdhsa,
.ps4,
.elfiamcu,
.mesa3d,
.contiki,
.amdpal,
.zen,
.hermit,
=> return .eabi,
.openbsd,
.macosx,
.freebsd,
.ios,
.tvos,
.watchos,
.fuchsia,
.kfreebsd,
.netbsd,
.hurd,
=> return .gnu,
.windows,
.uefi,
=> return .msvc,
.linux,
.wasi,
.emscripten,
=> return .musl,
}
}
pub const ParseArchSubError = error{
UnknownArchitecture,
UnknownSubArchitecture,
};
pub fn parseArchSub(text: []const u8) ParseArchSubError!Arch {
const info = @typeInfo(Arch);
inline for (info.Union.fields) |field| {
if (mem.eql(u8, text, field.name)) {
if (field.field_type == void) {
return (Arch)(@field(Arch, field.name));
} else {
const sub_info = @typeInfo(field.field_type);
inline for (sub_info.Enum.fields) |sub_field| {
const combined = field.name ++ sub_field.name;
if (mem.eql(u8, text, combined)) {
return @unionInit(Arch, field.name, @field(field.field_type, sub_field.name));
}
}
return error.UnknownSubArchitecture;
}
}
}
return error.UnknownArchitecture;
}
pub fn parseOs(text: []const u8) !Os {
const info = @typeInfo(Os);
inline for (info.Enum.fields) |field| {
if (mem.eql(u8, text, field.name)) {
return @field(Os, field.name);
}
}
return error.UnknownOperatingSystem;
}
pub fn parseAbi(text: []const u8) !Abi {
const info = @typeInfo(Abi);
inline for (info.Enum.fields) |field| {
if (mem.eql(u8, text, field.name)) {
return @field(Abi, field.name);
}
}
return error.UnknownApplicationBinaryInterface;
}
fn archSubArchName(arch: Arch) []const u8 {
return switch (arch) {
.arm => |sub| @tagName(sub),
.armeb => |sub| @tagName(sub),
.thumb => |sub| @tagName(sub),
.thumbeb => |sub| @tagName(sub),
.aarch64 => |sub| @tagName(sub),
.aarch64_be => |sub| @tagName(sub),
.kalimba => |sub| @tagName(sub),
else => "",
};
}
pub fn subArchName(self: Target) []const u8 {
switch (self) {
.Native => return archSubArchName(builtin.arch),
.Cross => |cross| return archSubArchName(cross.arch),
}
}
pub fn oFileExt(self: Target) []const u8 {
return switch (self.getAbi()) {
.msvc => ".obj",
else => ".o",
};
}
pub fn exeFileExt(self: Target) []const u8 {
if (self.isWindows()) {
return ".exe";
} else if (self.isUefi()) {
return ".efi";
} else if (self.isWasm()) {
return ".wasm";
} else {
return "";
}
}
pub fn staticLibSuffix(self: Target) []const u8 {
if (self.isWasm()) {
return ".wasm";
}
switch (self.getAbi()) {
.msvc => return ".lib",
else => return ".a",
}
}
pub fn dynamicLibSuffix(self: Target) []const u8 {
if (self.isDarwin()) {
return ".dylib";
}
switch (self.getOs()) {
.windows => return ".dll",
else => return ".so",
}
}
pub fn libPrefix(self: Target) []const u8 {
if (self.isWasm()) {
return "";
}
switch (self.getAbi()) {
.msvc => return "",
else => return "lib",
}
}
pub fn getOs(self: Target) Os {
return switch (self) {
.Native => builtin.os,
.Cross => |t| t.os,
};
}
pub fn getArch(self: Target) Arch {
switch (self) {
.Native => return builtin.arch,
.Cross => |t| return t.arch,
}
}
pub fn getAbi(self: Target) Abi {
switch (self) {
.Native => return builtin.abi,
.Cross => |t| return t.abi,
}
}
pub fn isMinGW(self: Target) bool {
return self.isWindows() and self.isGnu();
}
pub fn isGnu(self: Target) bool {
return switch (self.getAbi()) {
.gnu, .gnuabin32, .gnuabi64, .gnueabi, .gnueabihf, .gnux32 => true,
else => false,
};
}
pub fn isDarwin(self: Target) bool {
return switch (self.getOs()) {
.ios, .macosx, .watchos, .tvos => true,
else => false,
};
}
pub fn isWindows(self: Target) bool {
return switch (self.getOs()) {
.windows => true,
else => false,
};
}
pub fn isLinux(self: Target) bool {
return switch (self.getOs()) {
.linux => true,
else => false,
};
}
pub fn isUefi(self: Target) bool {
return switch (self.getOs()) {
.uefi => true,
else => false,
};
}
pub fn isWasm(self: Target) bool {
return switch (self.getArch()) {
.wasm32, .wasm64 => true,
else => false,
};
}
pub fn isFreeBSD(self: Target) bool {
return switch (self.getOs()) {
.freebsd => true,
else => false,
};
}
pub fn isNetBSD(self: Target) bool {
return switch (self.getOs()) {
.netbsd => true,
else => false,
};
}
pub fn wantSharedLibSymLinks(self: Target) bool {
return !self.isWindows();
}
pub fn osRequiresLibC(self: Target) bool {
return self.isDarwin() or self.isFreeBSD() or self.isNetBSD();
}
pub fn getArchPtrBitWidth(self: Target) u32 {
switch (self.getArch()) {
.avr,
.msp430,
=> return 16,
.arc,
.arm,
.armeb,
.hexagon,
.le32,
.mips,
.mipsel,
.powerpc,
.r600,
.riscv32,
.sparc,
.sparcel,
.tce,
.tcele,
.thumb,
.thumbeb,
.i386,
.xcore,
.nvptx,
.amdil,
.hsail,
.spir,
.kalimba,
.shave,
.lanai,
.wasm32,
.renderscript32,
.aarch64_32,
=> return 32,
.aarch64,
.aarch64_be,
.mips64,
.mips64el,
.powerpc64,
.powerpc64le,
.riscv64,
.x86_64,
.nvptx64,
.le64,
.amdil64,
.hsail64,
.spir64,
.wasm64,
.renderscript64,
.amdgcn,
.bpfel,
.bpfeb,
.sparcv9,
.s390x,
=> return 64,
}
}
pub const Executor = union(enum) {
native,
qemu: []const u8,
wine: []const u8,
unavailable,
};
pub fn getExternalExecutor(self: Target) Executor {
if (@TagType(Target)(self) == .Native) return .native;
// If the target OS matches the host OS, we can use QEMU to emulate a foreign architecture.
if (self.getOs() == builtin.os) {
return switch (self.getArch()) {
.aarch64 => Executor{ .qemu = "qemu-aarch64" },
.aarch64_be => Executor{ .qemu = "qemu-aarch64_be" },
.arm => Executor{ .qemu = "qemu-arm" },
.armeb => Executor{ .qemu = "qemu-armeb" },
.i386 => Executor{ .qemu = "qemu-i386" },
.mips => Executor{ .qemu = "qemu-mips" },
.mipsel => Executor{ .qemu = "qemu-mipsel" },
.mips64 => Executor{ .qemu = "qemu-mips64" },
.mips64el => Executor{ .qemu = "qemu-mips64el" },
.powerpc => Executor{ .qemu = "qemu-ppc" },
.powerpc64 => Executor{ .qemu = "qemu-ppc64" },
.powerpc64le => Executor{ .qemu = "qemu-ppc64le" },
.riscv32 => Executor{ .qemu = "qemu-riscv32" },
.riscv64 => Executor{ .qemu = "qemu-riscv64" },
.s390x => Executor{ .qemu = "qemu-s390x" },
.sparc => Executor{ .qemu = "qemu-sparc" },
.x86_64 => Executor{ .qemu = "qemu-x86_64" },
else => return .unavailable,
};
}
if (self.isWindows()) {
switch (self.getArchPtrBitWidth()) {
32 => return Executor{ .wine = "wine" },
64 => return Executor{ .wine = "wine64" },
else => return .unavailable,
}
}
return .unavailable;
}
};