zig/std/math/cosh.zig
Marc Tiehuis 4c16f9a3c3 Add math library
This covers the majority of the functions as covered by the C99
specification for a math library.

Code is adapted primarily from musl libc, with the pow and standard
trigonometric functions adapted from the Go stdlib.

Changes:

 - Remove assert expose in index and import as needed.
 - Add float log function and merge with existing base 2 integer
   implementation.

See https://github.com/tiehuis/zig-fmath.
See #374.
2017-06-16 20:32:31 +12:00

92 lines
2.4 KiB
Zig

const math = @import("index.zig");
const expo2 = @import("_expo2.zig").expo2;
const assert = @import("../debug.zig").assert;
pub fn cosh(x: var) -> @typeOf(x) {
const T = @typeOf(x);
switch (T) {
f32 => @inlineCall(coshf, x),
f64 => @inlineCall(coshd, x),
else => @compileError("cosh not implemented for " ++ @typeName(T)),
}
}
// cosh(x) = (exp(x) + 1 / exp(x)) / 2
// = 1 + 0.5 * (exp(x) - 1) * (exp(x) - 1) / exp(x)
// = 1 + (x * x) / 2 + o(x^4)
fn coshf(x: f32) -> f32 {
const u = @bitCast(u32, x);
const ux = u & 0x7FFFFFFF;
const ax = @bitCast(f32, ux);
// |x| < log(2)
if (ux < 0x3F317217) {
if (ux < 0x3F800000 - (12 << 23)) {
math.raiseOverflow();
return 1.0;
}
const t = math.expm1(ax);
return 1 + t * t / (2 * (1 + t));
}
// |x| < log(FLT_MAX)
if (ux < 0x42B17217) {
const t = math.exp(ax);
return 0.5 * (t + 1 / t);
}
// |x| > log(FLT_MAX) or nan
expo2(ax)
}
fn coshd(x: f64) -> f64 {
const u = @bitCast(u64, x);
const w = u32(u >> 32);
const ax = @bitCast(f64, u & (@maxValue(u64) >> 1));
// |x| < log(2)
if (w < 0x3FE62E42) {
if (w < 0x3FF00000 - (26 << 20)) {
if (x != 0) {
math.raiseInexact();
}
return 1.0;
}
const t = math.expm1(ax);
return 1 + t * t / (2 * (1 + t));
}
// |x| < log(DBL_MAX)
if (w < 0x40862E42) {
const t = math.exp(ax);
// NOTE: If x > log(0x1p26) then 1/t is not required.
return 0.5 * (t + 1 / t);
}
// |x| > log(CBL_MAX) or nan
expo2(ax)
}
test "cosh" {
assert(cosh(f32(1.5)) == coshf(1.5));
assert(cosh(f64(1.5)) == coshd(1.5));
}
test "coshf" {
const epsilon = 0.000001;
assert(math.approxEq(f32, coshf(0.0), 1.0, epsilon));
assert(math.approxEq(f32, coshf(0.2), 1.020067, epsilon));
assert(math.approxEq(f32, coshf(0.8923), 1.425225, epsilon));
assert(math.approxEq(f32, coshf(1.5), 2.352410, epsilon));
}
test "coshd" {
const epsilon = 0.000001;
assert(math.approxEq(f64, coshd(0.0), 1.0, epsilon));
assert(math.approxEq(f64, coshd(0.2), 1.020067, epsilon));
assert(math.approxEq(f64, coshd(0.8923), 1.425225, epsilon));
assert(math.approxEq(f64, coshd(1.5), 2.352410, epsilon));
}