zig/src-self-hosted/libc_installation.zig
Andrew Kelley aa3b41247f self-hosted: linking against libc
also introduce `zig libc` command to display paths
`zig libc file.txt` will parse equivalent text and use that for libc
paths.
2018-07-18 17:43:36 -04:00

387 lines
14 KiB
Zig

const std = @import("std");
const builtin = @import("builtin");
const event = std.event;
const Target = @import("target.zig").Target;
/// See the render function implementation for documentation of the fields.
pub const LibCInstallation = struct {
include_dir: []const u8,
lib_dir: ?[]const u8,
static_lib_dir: ?[]const u8,
msvc_lib_dir: ?[]const u8,
kernel32_lib_dir: ?[]const u8,
dynamic_linker_path: ?[]const u8,
pub const FindError = error{
OutOfMemory,
FileSystem,
UnableToSpawnCCompiler,
CCompilerExitCode,
CCompilerCrashed,
CCompilerCannotFindHeaders,
CCompilerCannotFindCRuntime,
LibCStdLibHeaderNotFound,
};
pub fn parse(
self: *LibCInstallation,
allocator: *std.mem.Allocator,
libc_file: []const u8,
stderr: *std.io.OutStream(std.io.FileOutStream.Error),
) !void {
self.initEmpty();
const keys = []const []const u8{
"include_dir",
"lib_dir",
"static_lib_dir",
"msvc_lib_dir",
"kernel32_lib_dir",
"dynamic_linker_path",
};
const FoundKey = struct {
found: bool,
allocated: ?[]u8,
};
var found_keys = [1]FoundKey{FoundKey{ .found = false, .allocated = null }} ** keys.len;
errdefer {
self.initEmpty();
for (found_keys) |found_key| {
if (found_key.allocated) |s| allocator.free(s);
}
}
const contents = try std.io.readFileAlloc(allocator, libc_file);
defer allocator.free(contents);
var it = std.mem.split(contents, "\n");
while (it.next()) |line| {
if (line.len == 0 or line[0] == '#') continue;
var line_it = std.mem.split(line, "=");
const name = line_it.next() orelse {
try stderr.print("missing equal sign after field name\n");
return error.ParseError;
};
const value = line_it.rest();
inline for (keys) |key, i| {
if (std.mem.eql(u8, name, key)) {
found_keys[i].found = true;
switch (@typeInfo(@typeOf(@field(self, key)))) {
builtin.TypeId.Optional => {
if (value.len == 0) {
@field(self, key) = null;
} else {
found_keys[i].allocated = try std.mem.dupe(allocator, u8, value);
@field(self, key) = found_keys[i].allocated;
}
},
else => {
if (value.len == 0) {
try stderr.print("field cannot be empty: {}\n", key);
return error.ParseError;
}
const dupe = try std.mem.dupe(allocator, u8, value);
found_keys[i].allocated = dupe;
@field(self, key) = dupe;
},
}
break;
}
}
}
for (found_keys) |found_key, i| {
if (!found_key.found) {
try stderr.print("missing field: {}\n", keys[i]);
return error.ParseError;
}
}
}
pub fn render(self: *const LibCInstallation, out: *std.io.OutStream(std.io.FileOutStream.Error)) !void {
@setEvalBranchQuota(4000);
try out.print(
\\# The directory that contains `stdlib.h`.
\\# On Linux, can be found with: `cc -E -Wp,-v -xc /dev/null`
\\include_dir={}
\\
\\# The directory that contains `crt1.o`.
\\# On Linux, can be found with `cc -print-file-name=crt1.o`.
\\# Not needed when targeting MacOS.
\\lib_dir={}
\\
\\# The directory that contains `crtbegin.o`.
\\# On Linux, can be found with `cc -print-file-name=crt1.o`.
\\# Not needed when targeting MacOS or Windows.
\\static_lib_dir={}
\\
\\# The directory that contains `vcruntime.lib`.
\\# Only needed when targeting Windows.
\\msvc_lib_dir={}
\\
\\# The directory that contains `kernel32.lib`.
\\# Only needed when targeting Windows.
\\kernel32_lib_dir={}
\\
\\# The full path to the dynamic linker.
\\# Only needed when targeting Linux.
\\dynamic_linker_path={}
\\
,
self.include_dir,
self.lib_dir orelse "",
self.static_lib_dir orelse "",
self.msvc_lib_dir orelse "",
self.kernel32_lib_dir orelse "",
self.dynamic_linker_path orelse Target(Target.Native).getDynamicLinkerPath(),
);
}
/// Finds the default, native libc.
pub async fn findNative(self: *LibCInstallation, loop: *event.Loop) !void {
self.initEmpty();
var group = event.Group(FindError!void).init(loop);
errdefer group.cancelAll();
switch (builtin.os) {
builtin.Os.windows => {
try group.call(findNativeIncludeDirWindows, self, loop);
try group.call(findNativeLibDirWindows, self, loop);
try group.call(findNativeMsvcLibDir, self, loop);
try group.call(findNativeKernel32LibDir, self, loop);
},
builtin.Os.linux => {
try group.call(findNativeIncludeDirLinux, self, loop);
try group.call(findNativeLibDirLinux, self, loop);
try group.call(findNativeStaticLibDir, self, loop);
try group.call(findNativeDynamicLinker, self, loop);
},
builtin.Os.macosx => {
try group.call(findNativeIncludeDirMacOS, self, loop);
},
else => @compileError("unimplemented: find libc for this OS"),
}
return await (async group.wait() catch unreachable);
}
async fn findNativeIncludeDirLinux(self: *LibCInstallation, loop: *event.Loop) !void {
const cc_exe = std.os.getEnvPosix("CC") orelse "cc";
const argv = []const []const u8{
cc_exe,
"-E",
"-Wp,-v",
"-xc",
"/dev/null",
};
// TODO make this use event loop
const errorable_result = std.os.ChildProcess.exec(loop.allocator, argv, null, null, 1024 * 1024);
const exec_result = if (std.debug.runtime_safety) blk: {
break :blk errorable_result catch unreachable;
} else blk: {
break :blk errorable_result catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => return error.UnableToSpawnCCompiler,
};
};
defer {
loop.allocator.free(exec_result.stdout);
loop.allocator.free(exec_result.stderr);
}
switch (exec_result.term) {
std.os.ChildProcess.Term.Exited => |code| {
if (code != 0) return error.CCompilerExitCode;
},
else => {
return error.CCompilerCrashed;
},
}
var it = std.mem.split(exec_result.stderr, "\n\r");
var search_paths = std.ArrayList([]const u8).init(loop.allocator);
defer search_paths.deinit();
while (it.next()) |line| {
if (line.len != 0 and line[0] == ' ') {
try search_paths.append(line);
}
}
if (search_paths.len == 0) {
return error.CCompilerCannotFindHeaders;
}
// search in reverse order
var path_i: usize = 0;
while (path_i < search_paths.len) : (path_i += 1) {
const search_path_untrimmed = search_paths.at(search_paths.len - path_i - 1);
const search_path = std.mem.trimLeft(u8, search_path_untrimmed, " ");
const stdlib_path = try std.os.path.join(loop.allocator, search_path, "stdlib.h");
defer loop.allocator.free(stdlib_path);
if (std.os.File.access(loop.allocator, stdlib_path)) |_| {
self.include_dir = try std.mem.dupe(loop.allocator, u8, search_path);
return;
} else |err| switch (err) {
error.NotFound, error.PermissionDenied => continue,
error.OutOfMemory => return error.OutOfMemory,
else => return error.FileSystem,
}
}
return error.LibCStdLibHeaderNotFound;
}
async fn findNativeIncludeDirWindows(self: *LibCInstallation, loop: *event.Loop) !void {
// TODO
//ZigWindowsSDK *sdk = get_windows_sdk(g);
//g->libc_include_dir = buf_alloc();
//if (os_get_win32_ucrt_include_path(sdk, g->libc_include_dir)) {
// fprintf(stderr, "Unable to determine libc include path. --libc-include-dir");
// exit(1);
//}
@panic("TODO");
}
async fn findNativeIncludeDirMacOS(self: *LibCInstallation, loop: *event.Loop) !void {
self.include_dir = try std.mem.dupe(loop.allocator, u8, "/usr/include");
}
async fn findNativeLibDirWindows(self: *LibCInstallation, loop: *event.Loop) FindError!void {
// TODO
//ZigWindowsSDK *sdk = get_windows_sdk(g);
//if (g->msvc_lib_dir == nullptr) {
// Buf* vc_lib_dir = buf_alloc();
// if (os_get_win32_vcruntime_path(vc_lib_dir, g->zig_target.arch.arch)) {
// fprintf(stderr, "Unable to determine vcruntime path. --msvc-lib-dir");
// exit(1);
// }
// g->msvc_lib_dir = vc_lib_dir;
//}
//if (g->libc_lib_dir == nullptr) {
// Buf* ucrt_lib_path = buf_alloc();
// if (os_get_win32_ucrt_lib_path(sdk, ucrt_lib_path, g->zig_target.arch.arch)) {
// fprintf(stderr, "Unable to determine ucrt path. --libc-lib-dir");
// exit(1);
// }
// g->libc_lib_dir = ucrt_lib_path;
//}
//if (g->kernel32_lib_dir == nullptr) {
// Buf* kern_lib_path = buf_alloc();
// if (os_get_win32_kern32_path(sdk, kern_lib_path, g->zig_target.arch.arch)) {
// fprintf(stderr, "Unable to determine kernel32 path. --kernel32-lib-dir");
// exit(1);
// }
// g->kernel32_lib_dir = kern_lib_path;
//}
@panic("TODO");
}
async fn findNativeLibDirLinux(self: *LibCInstallation, loop: *event.Loop) FindError!void {
self.lib_dir = try await (async ccPrintFileName(loop, "crt1.o", true) catch unreachable);
}
async fn findNativeStaticLibDir(self: *LibCInstallation, loop: *event.Loop) FindError!void {
self.static_lib_dir = try await (async ccPrintFileName(loop, "crtbegin.o", true) catch unreachable);
}
async fn findNativeDynamicLinker(self: *LibCInstallation, loop: *event.Loop) FindError!void {
var dyn_tests = []DynTest{
DynTest{
.name = "ld-linux-x86-64.so.2",
.result = null,
},
DynTest{
.name = "ld-musl-x86_64.so.1",
.result = null,
},
};
var group = event.Group(FindError!void).init(loop);
errdefer group.cancelAll();
for (dyn_tests) |*dyn_test| {
try group.call(testNativeDynamicLinker, self, loop, dyn_test);
}
try await (async group.wait() catch unreachable);
for (dyn_tests) |*dyn_test| {
if (dyn_test.result) |result| {
self.dynamic_linker_path = result;
return;
}
}
}
const DynTest = struct {
name: []const u8,
result: ?[]const u8,
};
async fn testNativeDynamicLinker(self: *LibCInstallation, loop: *event.Loop, dyn_test: *DynTest) FindError!void {
if (await (async ccPrintFileName(loop, dyn_test.name, false) catch unreachable)) |result| {
dyn_test.result = result;
return;
} else |err| switch (err) {
error.CCompilerCannotFindCRuntime => return,
else => return err,
}
}
async fn findNativeMsvcLibDir(self: *LibCInstallation, loop: *event.Loop) FindError!void {
@panic("TODO");
}
async fn findNativeKernel32LibDir(self: *LibCInstallation, loop: *event.Loop) FindError!void {
@panic("TODO");
}
fn initEmpty(self: *LibCInstallation) void {
self.* = LibCInstallation{
.include_dir = ([*]const u8)(undefined)[0..0],
.lib_dir = null,
.static_lib_dir = null,
.msvc_lib_dir = null,
.kernel32_lib_dir = null,
.dynamic_linker_path = null,
};
}
};
/// caller owns returned memory
async fn ccPrintFileName(loop: *event.Loop, o_file: []const u8, want_dirname: bool) ![]u8 {
const cc_exe = std.os.getEnvPosix("CC") orelse "cc";
const arg1 = try std.fmt.allocPrint(loop.allocator, "-print-file-name={}", o_file);
defer loop.allocator.free(arg1);
const argv = []const []const u8{ cc_exe, arg1 };
// TODO This simulates evented I/O for the child process exec
await (async loop.yield() catch unreachable);
const errorable_result = std.os.ChildProcess.exec(loop.allocator, argv, null, null, 1024 * 1024);
const exec_result = if (std.debug.runtime_safety) blk: {
break :blk errorable_result catch unreachable;
} else blk: {
break :blk errorable_result catch |err| switch (err) {
error.OutOfMemory => return error.OutOfMemory,
else => return error.UnableToSpawnCCompiler,
};
};
defer {
loop.allocator.free(exec_result.stdout);
loop.allocator.free(exec_result.stderr);
}
switch (exec_result.term) {
std.os.ChildProcess.Term.Exited => |code| {
if (code != 0) return error.CCompilerExitCode;
},
else => {
return error.CCompilerCrashed;
},
}
var it = std.mem.split(exec_result.stdout, "\n\r");
const line = it.next() orelse return error.CCompilerCannotFindCRuntime;
const dirname = std.os.path.dirname(line) orelse return error.CCompilerCannotFindCRuntime;
if (want_dirname) {
return std.mem.dupe(loop.allocator, u8, dirname);
} else {
return std.mem.dupe(loop.allocator, u8, line);
}
}