const std = @import("std"); const builtin = @import("builtin"); const crypto = std.crypto; const debug = std.debug; const math = std.math; const mem = std.mem; const utils = std.crypto.utils; const Poly1305 = crypto.onetimeauth.Poly1305; const Blake2b = crypto.hash.blake2.Blake2b; const X25519 = crypto.dh.X25519; const AuthenticationError = crypto.errors.AuthenticationError; const IdentityElementError = crypto.errors.IdentityElementError; const WeakPublicKeyError = crypto.errors.WeakPublicKeyError; const Salsa20VecImpl = struct { const Lane = @Vector(4, u32); const Half = @Vector(2, u32); const BlockVec = [4]Lane; fn initContext(key: [8]u32, d: [4]u32) BlockVec { const c = "expand 32-byte k"; const constant_le = comptime [4]u32{ mem.readIntLittle(u32, c[0..4]), mem.readIntLittle(u32, c[4..8]), mem.readIntLittle(u32, c[8..12]), mem.readIntLittle(u32, c[12..16]), }; return BlockVec{ Lane{ key[0], key[1], key[2], key[3] }, Lane{ key[4], key[5], key[6], key[7] }, Lane{ constant_le[0], constant_le[1], constant_le[2], constant_le[3] }, Lane{ d[0], d[1], d[2], d[3] }, }; } inline fn salsa20Core(x: *BlockVec, input: BlockVec, comptime feedback: bool) void { const n1n2n3n0 = Lane{ input[3][1], input[3][2], input[3][3], input[3][0] }; const n1n2 = Half{ n1n2n3n0[0], n1n2n3n0[1] }; const n3n0 = Half{ n1n2n3n0[2], n1n2n3n0[3] }; const k0k1 = Half{ input[0][0], input[0][1] }; const k2k3 = Half{ input[0][2], input[0][3] }; const k4k5 = Half{ input[1][0], input[1][1] }; const k6k7 = Half{ input[1][2], input[1][3] }; const n0k0 = Half{ n3n0[1], k0k1[0] }; const k0n0 = Half{ n0k0[1], n0k0[0] }; const k4k5k0n0 = Lane{ k4k5[0], k4k5[1], k0n0[0], k0n0[1] }; const k1k6 = Half{ k0k1[1], k6k7[0] }; const k6k1 = Half{ k1k6[1], k1k6[0] }; const n1n2k6k1 = Lane{ n1n2[0], n1n2[1], k6k1[0], k6k1[1] }; const k7n3 = Half{ k6k7[1], n3n0[0] }; const n3k7 = Half{ k7n3[1], k7n3[0] }; const k2k3n3k7 = Lane{ k2k3[0], k2k3[1], n3k7[0], n3k7[1] }; var diag0 = input[2]; var diag1 = @shuffle(u32, k4k5k0n0, undefined, [_]i32{ 1, 2, 3, 0 }); var diag2 = @shuffle(u32, n1n2k6k1, undefined, [_]i32{ 1, 2, 3, 0 }); var diag3 = @shuffle(u32, k2k3n3k7, undefined, [_]i32{ 1, 2, 3, 0 }); const start0 = diag0; const start1 = diag1; const start2 = diag2; const start3 = diag3; var i: usize = 0; while (i < 20) : (i += 2) { var a0 = diag1 +% diag0; diag3 ^= math.rotl(Lane, a0, 7); var a1 = diag0 +% diag3; diag2 ^= math.rotl(Lane, a1, 9); var a2 = diag3 +% diag2; diag1 ^= math.rotl(Lane, a2, 13); var a3 = diag2 +% diag1; diag0 ^= math.rotl(Lane, a3, 18); var diag3_shift = @shuffle(u32, diag3, undefined, [_]i32{ 3, 0, 1, 2 }); var diag2_shift = @shuffle(u32, diag2, undefined, [_]i32{ 2, 3, 0, 1 }); var diag1_shift = @shuffle(u32, diag1, undefined, [_]i32{ 1, 2, 3, 0 }); diag3 = diag3_shift; diag2 = diag2_shift; diag1 = diag1_shift; a0 = diag3 +% diag0; diag1 ^= math.rotl(Lane, a0, 7); a1 = diag0 +% diag1; diag2 ^= math.rotl(Lane, a1, 9); a2 = diag1 +% diag2; diag3 ^= math.rotl(Lane, a2, 13); a3 = diag2 +% diag3; diag0 ^= math.rotl(Lane, a3, 18); diag1_shift = @shuffle(u32, diag1, undefined, [_]i32{ 3, 0, 1, 2 }); diag2_shift = @shuffle(u32, diag2, undefined, [_]i32{ 2, 3, 0, 1 }); diag3_shift = @shuffle(u32, diag3, undefined, [_]i32{ 1, 2, 3, 0 }); diag1 = diag1_shift; diag2 = diag2_shift; diag3 = diag3_shift; } if (feedback) { diag0 +%= start0; diag1 +%= start1; diag2 +%= start2; diag3 +%= start3; } const x0x1x10x11 = Lane{ diag0[0], diag1[1], diag0[2], diag1[3] }; const x12x13x6x7 = Lane{ diag1[0], diag2[1], diag1[2], diag2[3] }; const x8x9x2x3 = Lane{ diag2[0], diag3[1], diag2[2], diag3[3] }; const x4x5x14x15 = Lane{ diag3[0], diag0[1], diag3[2], diag0[3] }; x[0] = Lane{ x0x1x10x11[0], x0x1x10x11[1], x8x9x2x3[2], x8x9x2x3[3] }; x[1] = Lane{ x4x5x14x15[0], x4x5x14x15[1], x12x13x6x7[2], x12x13x6x7[3] }; x[2] = Lane{ x8x9x2x3[0], x8x9x2x3[1], x0x1x10x11[2], x0x1x10x11[3] }; x[3] = Lane{ x12x13x6x7[0], x12x13x6x7[1], x4x5x14x15[2], x4x5x14x15[3] }; } fn hashToBytes(out: *[64]u8, x: BlockVec) void { var i: usize = 0; while (i < 4) : (i += 1) { mem.writeIntLittle(u32, out[16 * i + 0 ..][0..4], x[i][0]); mem.writeIntLittle(u32, out[16 * i + 4 ..][0..4], x[i][1]); mem.writeIntLittle(u32, out[16 * i + 8 ..][0..4], x[i][2]); mem.writeIntLittle(u32, out[16 * i + 12 ..][0..4], x[i][3]); } } fn salsa20Xor(out: []u8, in: []const u8, key: [8]u32, d: [4]u32) void { var ctx = initContext(key, d); var x: BlockVec = undefined; var buf: [64]u8 = undefined; var i: usize = 0; while (i + 64 <= in.len) : (i += 64) { salsa20Core(x[0..], ctx, true); hashToBytes(buf[0..], x); var xout = out[i..]; const xin = in[i..]; var j: usize = 0; while (j < 64) : (j += 1) { xout[j] = xin[j]; } j = 0; while (j < 64) : (j += 1) { xout[j] ^= buf[j]; } ctx[3][2] +%= 1; if (ctx[3][2] == 0) { ctx[3][3] += 1; } } if (i < in.len) { salsa20Core(x[0..], ctx, true); hashToBytes(buf[0..], x); var xout = out[i..]; const xin = in[i..]; var j: usize = 0; while (j < in.len % 64) : (j += 1) { xout[j] = xin[j] ^ buf[j]; } } } fn hsalsa20(input: [16]u8, key: [32]u8) [32]u8 { var c: [4]u32 = undefined; for (c) |_, i| { c[i] = mem.readIntLittle(u32, input[4 * i ..][0..4]); } const ctx = initContext(keyToWords(key), c); var x: BlockVec = undefined; salsa20Core(x[0..], ctx, false); var out: [32]u8 = undefined; mem.writeIntLittle(u32, out[0..4], x[0][0]); mem.writeIntLittle(u32, out[4..8], x[1][1]); mem.writeIntLittle(u32, out[8..12], x[2][2]); mem.writeIntLittle(u32, out[12..16], x[3][3]); mem.writeIntLittle(u32, out[16..20], x[1][2]); mem.writeIntLittle(u32, out[20..24], x[1][3]); mem.writeIntLittle(u32, out[24..28], x[2][0]); mem.writeIntLittle(u32, out[28..32], x[2][1]); return out; } }; const Salsa20NonVecImpl = struct { const BlockVec = [16]u32; fn initContext(key: [8]u32, d: [4]u32) BlockVec { const c = "expand 32-byte k"; const constant_le = comptime [4]u32{ mem.readIntLittle(u32, c[0..4]), mem.readIntLittle(u32, c[4..8]), mem.readIntLittle(u32, c[8..12]), mem.readIntLittle(u32, c[12..16]), }; return BlockVec{ constant_le[0], key[0], key[1], key[2], key[3], constant_le[1], d[0], d[1], d[2], d[3], constant_le[2], key[4], key[5], key[6], key[7], constant_le[3], }; } const QuarterRound = struct { a: usize, b: usize, c: usize, d: u6, }; inline fn Rp(a: usize, b: usize, c: usize, d: u6) QuarterRound { return QuarterRound{ .a = a, .b = b, .c = c, .d = d, }; } inline fn salsa20Core(x: *BlockVec, input: BlockVec, comptime feedback: bool) void { const arx_steps = comptime [_]QuarterRound{ Rp(4, 0, 12, 7), Rp(8, 4, 0, 9), Rp(12, 8, 4, 13), Rp(0, 12, 8, 18), Rp(9, 5, 1, 7), Rp(13, 9, 5, 9), Rp(1, 13, 9, 13), Rp(5, 1, 13, 18), Rp(14, 10, 6, 7), Rp(2, 14, 10, 9), Rp(6, 2, 14, 13), Rp(10, 6, 2, 18), Rp(3, 15, 11, 7), Rp(7, 3, 15, 9), Rp(11, 7, 3, 13), Rp(15, 11, 7, 18), Rp(1, 0, 3, 7), Rp(2, 1, 0, 9), Rp(3, 2, 1, 13), Rp(0, 3, 2, 18), Rp(6, 5, 4, 7), Rp(7, 6, 5, 9), Rp(4, 7, 6, 13), Rp(5, 4, 7, 18), Rp(11, 10, 9, 7), Rp(8, 11, 10, 9), Rp(9, 8, 11, 13), Rp(10, 9, 8, 18), Rp(12, 15, 14, 7), Rp(13, 12, 15, 9), Rp(14, 13, 12, 13), Rp(15, 14, 13, 18), }; x.* = input; var j: usize = 0; while (j < 20) : (j += 2) { inline for (arx_steps) |r| { x[r.a] ^= math.rotl(u32, x[r.b] +% x[r.c], r.d); } } if (feedback) { j = 0; while (j < 16) : (j += 1) { x[j] +%= input[j]; } } } fn hashToBytes(out: *[64]u8, x: BlockVec) void { for (x) |w, i| { mem.writeIntLittle(u32, out[i * 4 ..][0..4], w); } } fn salsa20Xor(out: []u8, in: []const u8, key: [8]u32, d: [4]u32) void { var ctx = initContext(key, d); var x: BlockVec = undefined; var buf: [64]u8 = undefined; var i: usize = 0; while (i + 64 <= in.len) : (i += 64) { salsa20Core(x[0..], ctx, true); hashToBytes(buf[0..], x); var xout = out[i..]; const xin = in[i..]; var j: usize = 0; while (j < 64) : (j += 1) { xout[j] = xin[j]; } j = 0; while (j < 64) : (j += 1) { xout[j] ^= buf[j]; } ctx[9] += @boolToInt(@addWithOverflow(u32, ctx[8], 1, &ctx[8])); } if (i < in.len) { salsa20Core(x[0..], ctx, true); hashToBytes(buf[0..], x); var xout = out[i..]; const xin = in[i..]; var j: usize = 0; while (j < in.len % 64) : (j += 1) { xout[j] = xin[j] ^ buf[j]; } } } fn hsalsa20(input: [16]u8, key: [32]u8) [32]u8 { var c: [4]u32 = undefined; for (c) |_, i| { c[i] = mem.readIntLittle(u32, input[4 * i ..][0..4]); } const ctx = initContext(keyToWords(key), c); var x: BlockVec = undefined; salsa20Core(x[0..], ctx, false); var out: [32]u8 = undefined; mem.writeIntLittle(u32, out[0..4], x[0]); mem.writeIntLittle(u32, out[4..8], x[5]); mem.writeIntLittle(u32, out[8..12], x[10]); mem.writeIntLittle(u32, out[12..16], x[15]); mem.writeIntLittle(u32, out[16..20], x[6]); mem.writeIntLittle(u32, out[20..24], x[7]); mem.writeIntLittle(u32, out[24..28], x[8]); mem.writeIntLittle(u32, out[28..32], x[9]); return out; } }; const Salsa20Impl = if (builtin.cpu.arch == .x86_64) Salsa20VecImpl else Salsa20NonVecImpl; fn keyToWords(key: [32]u8) [8]u32 { var k: [8]u32 = undefined; var i: usize = 0; while (i < 8) : (i += 1) { k[i] = mem.readIntLittle(u32, key[i * 4 ..][0..4]); } return k; } fn extend(key: [32]u8, nonce: [24]u8) struct { key: [32]u8, nonce: [8]u8 } { return .{ .key = Salsa20Impl.hsalsa20(nonce[0..16].*, key), .nonce = nonce[16..24].*, }; } /// The Salsa20 stream cipher. pub const Salsa20 = struct { /// Nonce length in bytes. pub const nonce_length = 8; /// Key length in bytes. pub const key_length = 32; /// Add the output of the Salsa20 stream cipher to `in` and stores the result into `out`. /// WARNING: This function doesn't provide authenticated encryption. /// Using the AEAD or one of the `box` versions is usually preferred. pub fn xor(out: []u8, in: []const u8, counter: u64, key: [key_length]u8, nonce: [nonce_length]u8) void { debug.assert(in.len == out.len); var d: [4]u32 = undefined; d[0] = mem.readIntLittle(u32, nonce[0..4]); d[1] = mem.readIntLittle(u32, nonce[4..8]); d[2] = @truncate(u32, counter); d[3] = @truncate(u32, counter >> 32); Salsa20Impl.salsa20Xor(out, in, keyToWords(key), d); } }; /// The XSalsa20 stream cipher. pub const XSalsa20 = struct { /// Nonce length in bytes. pub const nonce_length = 24; /// Key length in bytes. pub const key_length = 32; /// Add the output of the XSalsa20 stream cipher to `in` and stores the result into `out`. /// WARNING: This function doesn't provide authenticated encryption. /// Using the AEAD or one of the `box` versions is usually preferred. pub fn xor(out: []u8, in: []const u8, counter: u64, key: [key_length]u8, nonce: [nonce_length]u8) void { const extended = extend(key, nonce); Salsa20.xor(out, in, counter, extended.key, extended.nonce); } }; /// The XSalsa20 stream cipher, combined with the Poly1305 MAC pub const XSalsa20Poly1305 = struct { /// Authentication tag length in bytes. pub const tag_length = Poly1305.mac_length; /// Nonce length in bytes. pub const nonce_length = XSalsa20.nonce_length; /// Key length in bytes. pub const key_length = XSalsa20.key_length; /// c: ciphertext: output buffer should be of size m.len /// tag: authentication tag: output MAC /// m: message /// ad: Associated Data /// npub: public nonce /// k: private key pub fn encrypt(c: []u8, tag: *[tag_length]u8, m: []const u8, ad: []const u8, npub: [nonce_length]u8, k: [key_length]u8) void { debug.assert(c.len == m.len); const extended = extend(k, npub); var block0 = [_]u8{0} ** 64; const mlen0 = math.min(32, m.len); mem.copy(u8, block0[32..][0..mlen0], m[0..mlen0]); Salsa20.xor(block0[0..], block0[0..], 0, extended.key, extended.nonce); mem.copy(u8, c[0..mlen0], block0[32..][0..mlen0]); Salsa20.xor(c[mlen0..], m[mlen0..], 1, extended.key, extended.nonce); var mac = Poly1305.init(block0[0..32]); mac.update(ad); mac.update(c); mac.final(tag); } /// m: message: output buffer should be of size c.len /// c: ciphertext /// tag: authentication tag /// ad: Associated Data /// npub: public nonce /// k: private key pub fn decrypt(m: []u8, c: []const u8, tag: [tag_length]u8, ad: []const u8, npub: [nonce_length]u8, k: [key_length]u8) AuthenticationError!void { debug.assert(c.len == m.len); const extended = extend(k, npub); var block0 = [_]u8{0} ** 64; const mlen0 = math.min(32, c.len); mem.copy(u8, block0[32..][0..mlen0], c[0..mlen0]); Salsa20.xor(block0[0..], block0[0..], 0, extended.key, extended.nonce); var mac = Poly1305.init(block0[0..32]); mac.update(ad); mac.update(c); var computedTag: [tag_length]u8 = undefined; mac.final(&computedTag); var acc: u8 = 0; for (computedTag) |_, i| { acc |= computedTag[i] ^ tag[i]; } if (acc != 0) { utils.secureZero(u8, &computedTag); return error.AuthenticationFailed; } mem.copy(u8, m[0..mlen0], block0[32..][0..mlen0]); Salsa20.xor(m[mlen0..], c[mlen0..], 1, extended.key, extended.nonce); } }; /// NaCl-compatible secretbox API. /// /// A secretbox contains both an encrypted message and an authentication tag to verify that it hasn't been tampered with. /// A secret key shared by all the recipients must be already known in order to use this API. /// /// Nonces are 192-bit large and can safely be chosen with a random number generator. pub const SecretBox = struct { /// Key length in bytes. pub const key_length = XSalsa20Poly1305.key_length; /// Nonce length in bytes. pub const nonce_length = XSalsa20Poly1305.nonce_length; /// Authentication tag length in bytes. pub const tag_length = XSalsa20Poly1305.tag_length; /// Encrypt and authenticate `m` using a nonce `npub` and a key `k`. /// `c` must be exactly `tag_length` longer than `m`, as it will store both the ciphertext and the authentication tag. pub fn seal(c: []u8, m: []const u8, npub: [nonce_length]u8, k: [key_length]u8) void { debug.assert(c.len == tag_length + m.len); XSalsa20Poly1305.encrypt(c[tag_length..], c[0..tag_length], m, "", npub, k); } /// Verify and decrypt `c` using a nonce `npub` and a key `k`. /// `m` must be exactly `tag_length` smaller than `c`, as `c` includes an authentication tag in addition to the encrypted message. pub fn open(m: []u8, c: []const u8, npub: [nonce_length]u8, k: [key_length]u8) AuthenticationError!void { if (c.len < tag_length) { return error.AuthenticationFailed; } debug.assert(m.len == c.len - tag_length); return XSalsa20Poly1305.decrypt(m, c[tag_length..], c[0..tag_length].*, "", npub, k); } }; /// NaCl-compatible box API. /// /// A secretbox contains both an encrypted message and an authentication tag to verify that it hasn't been tampered with. /// This construction uses public-key cryptography. A shared secret doesn't have to be known in advance by both parties. /// Instead, a message is encrypted using a sender's secret key and a recipient's public key, /// and is decrypted using the recipient's secret key and the sender's public key. /// /// Nonces are 192-bit large and can safely be chosen with a random number generator. pub const Box = struct { /// Public key length in bytes. pub const public_length = X25519.public_length; /// Secret key length in bytes. pub const secret_length = X25519.secret_length; /// Shared key length in bytes. pub const shared_length = XSalsa20Poly1305.key_length; /// Seed (for key pair creation) length in bytes. pub const seed_length = X25519.seed_length; /// Nonce length in bytes. pub const nonce_length = XSalsa20Poly1305.nonce_length; /// Authentication tag length in bytes. pub const tag_length = XSalsa20Poly1305.tag_length; /// A key pair. pub const KeyPair = X25519.KeyPair; /// Compute a secret suitable for `secretbox` given a recipent's public key and a sender's secret key. pub fn createSharedSecret(public_key: [public_length]u8, secret_key: [secret_length]u8) (IdentityElementError || WeakPublicKeyError)![shared_length]u8 { const p = try X25519.scalarmult(secret_key, public_key); const zero = [_]u8{0} ** 16; return Salsa20Impl.hsalsa20(zero, p); } /// Encrypt and authenticate a message using a recipient's public key `public_key` and a sender's `secret_key`. pub fn seal(c: []u8, m: []const u8, npub: [nonce_length]u8, public_key: [public_length]u8, secret_key: [secret_length]u8) (IdentityElementError || WeakPublicKeyError)!void { const shared_key = try createSharedSecret(public_key, secret_key); return SecretBox.seal(c, m, npub, shared_key); } /// Verify and decrypt a message using a recipient's secret key `public_key` and a sender's `public_key`. pub fn open(m: []u8, c: []const u8, npub: [nonce_length]u8, public_key: [public_length]u8, secret_key: [secret_length]u8) (IdentityElementError || WeakPublicKeyError || AuthenticationError)!void { const shared_key = try createSharedSecret(public_key, secret_key); return SecretBox.open(m, c, npub, shared_key); } }; /// libsodium-compatible sealed boxes /// /// Sealed boxes are designed to anonymously send messages to a recipient given their public key. /// Only the recipient can decrypt these messages, using their private key. /// While the recipient can verify the integrity of the message, it cannot verify the identity of the sender. /// /// A message is encrypted using an ephemeral key pair, whose secret part is destroyed right after the encryption process. pub const SealedBox = struct { pub const public_length = Box.public_length; pub const secret_length = Box.secret_length; pub const seed_length = Box.seed_length; pub const seal_length = Box.public_length + Box.tag_length; /// A key pair. pub const KeyPair = Box.KeyPair; fn createNonce(pk1: [public_length]u8, pk2: [public_length]u8) [Box.nonce_length]u8 { var hasher = Blake2b(Box.nonce_length * 8).init(.{}); hasher.update(&pk1); hasher.update(&pk2); var nonce: [Box.nonce_length]u8 = undefined; hasher.final(&nonce); return nonce; } /// Encrypt a message `m` for a recipient whose public key is `public_key`. /// `c` must be `seal_length` bytes larger than `m`, so that the required metadata can be added. pub fn seal(c: []u8, m: []const u8, public_key: [public_length]u8) (WeakPublicKeyError || IdentityElementError)!void { debug.assert(c.len == m.len + seal_length); var ekp = try KeyPair.create(null); const nonce = createNonce(ekp.public_key, public_key); mem.copy(u8, c[0..public_length], ekp.public_key[0..]); try Box.seal(c[Box.public_length..], m, nonce, public_key, ekp.secret_key); utils.secureZero(u8, ekp.secret_key[0..]); } /// Decrypt a message using a key pair. /// `m` must be exactly `seal_length` bytes smaller than `c`, as `c` also includes metadata. pub fn open(m: []u8, c: []const u8, keypair: KeyPair) (IdentityElementError || WeakPublicKeyError || AuthenticationError)!void { if (c.len < seal_length) { return error.AuthenticationFailed; } const epk = c[0..public_length]; const nonce = createNonce(epk.*, keypair.public_key); return Box.open(m, c[public_length..], nonce, epk.*, keypair.secret_key); } }; const htest = @import("test.zig"); test "(x)salsa20" { const key = [_]u8{0x69} ** 32; const nonce = [_]u8{0x42} ** 8; const msg = [_]u8{0} ** 20; var c: [msg.len]u8 = undefined; Salsa20.xor(&c, msg[0..], 0, key, nonce); try htest.assertEqual("30ff9933aa6534ff5207142593cd1fca4b23bdd8", c[0..]); const extended_nonce = [_]u8{0x42} ** 24; XSalsa20.xor(&c, msg[0..], 0, key, extended_nonce); try htest.assertEqual("b4ab7d82e750ec07644fa3281bce6cd91d4243f9", c[0..]); } test "xsalsa20poly1305" { var msg: [100]u8 = undefined; var msg2: [msg.len]u8 = undefined; var c: [msg.len]u8 = undefined; var key: [XSalsa20Poly1305.key_length]u8 = undefined; var nonce: [XSalsa20Poly1305.nonce_length]u8 = undefined; var tag: [XSalsa20Poly1305.tag_length]u8 = undefined; crypto.random.bytes(&msg); crypto.random.bytes(&key); crypto.random.bytes(&nonce); XSalsa20Poly1305.encrypt(c[0..], &tag, msg[0..], "ad", nonce, key); try XSalsa20Poly1305.decrypt(msg2[0..], c[0..], tag, "ad", nonce, key); } test "xsalsa20poly1305 secretbox" { var msg: [100]u8 = undefined; var msg2: [msg.len]u8 = undefined; var key: [XSalsa20Poly1305.key_length]u8 = undefined; var nonce: [Box.nonce_length]u8 = undefined; var boxed: [msg.len + Box.tag_length]u8 = undefined; crypto.random.bytes(&msg); crypto.random.bytes(&key); crypto.random.bytes(&nonce); SecretBox.seal(boxed[0..], msg[0..], nonce, key); try SecretBox.open(msg2[0..], boxed[0..], nonce, key); } test "xsalsa20poly1305 box" { var msg: [100]u8 = undefined; var msg2: [msg.len]u8 = undefined; var nonce: [Box.nonce_length]u8 = undefined; var boxed: [msg.len + Box.tag_length]u8 = undefined; crypto.random.bytes(&msg); crypto.random.bytes(&nonce); var kp1 = try Box.KeyPair.create(null); var kp2 = try Box.KeyPair.create(null); try Box.seal(boxed[0..], msg[0..], nonce, kp1.public_key, kp2.secret_key); try Box.open(msg2[0..], boxed[0..], nonce, kp2.public_key, kp1.secret_key); } test "xsalsa20poly1305 sealedbox" { var msg: [100]u8 = undefined; var msg2: [msg.len]u8 = undefined; var boxed: [msg.len + SealedBox.seal_length]u8 = undefined; crypto.random.bytes(&msg); var kp = try Box.KeyPair.create(null); try SealedBox.seal(boxed[0..], msg[0..], kp.public_key); try SealedBox.open(msg2[0..], boxed[0..], kp); } test "secretbox twoblocks" { const key = [_]u8{ 0xc9, 0xc9, 0x4d, 0xcf, 0x68, 0xbe, 0x00, 0xe4, 0x7f, 0xe6, 0x13, 0x26, 0xfc, 0xc4, 0x2f, 0xd0, 0xdb, 0x93, 0x91, 0x1c, 0x09, 0x94, 0x89, 0xe1, 0x1b, 0x88, 0x63, 0x18, 0x86, 0x64, 0x8b, 0x7b }; const nonce = [_]u8{ 0xa4, 0x33, 0xe9, 0x0a, 0x07, 0x68, 0x6e, 0x9a, 0x2b, 0x6d, 0xd4, 0x59, 0x04, 0x72, 0x3e, 0xd3, 0x8a, 0x67, 0x55, 0xc7, 0x9e, 0x3e, 0x77, 0xdc }; const msg = [_]u8{'a'} ** 97; var ciphertext: [msg.len + SecretBox.tag_length]u8 = undefined; SecretBox.seal(&ciphertext, &msg, nonce, key); try htest.assertEqual("b05760e217288ba079caa2fd57fd3701784974ffcfda20fe523b89211ad8af065a6eb37cdb29d51aca5bd75dafdd21d18b044c54bb7c526cf576c94ee8900f911ceab0147e82b667a28c52d58ceb29554ff45471224d37b03256b01c119b89ff6d36855de8138d103386dbc9d971f52261", &ciphertext); }