const builtin = @import("builtin"); const std = @import("std"); const maxInt = std.math.maxInt; fn floatsiXf(comptime T: type, a: i32) T { @setRuntimeSafety(builtin.is_test); const Z = @IntType(false, T.bit_count); const S = @IntType(false, T.bit_count - @clz(Z, Z(T.bit_count) - 1)); if (a == 0) { return T(0.0); } const significandBits = std.math.floatMantissaBits(T); const exponentBits = std.math.floatExponentBits(T); const exponentBias = ((1 << exponentBits - 1) - 1); const implicitBit = Z(1) << significandBits; const signBit = Z(1 << Z.bit_count - 1); const sign = a >> 31; // Take absolute value of a via abs(x) = (x^(x >> 31)) - (x >> 31). const abs_a = (a ^ sign) -% sign; // The exponent is the width of abs(a) const exp = Z(31 - @clz(i32, abs_a)); const sign_bit = if (sign < 0) signBit else 0; var mantissa: Z = undefined; // Shift a into the significand field and clear the implicit bit. if (exp <= significandBits) { // No rounding needed const shift = @intCast(S, significandBits - exp); mantissa = @intCast(Z, @bitCast(u32, abs_a)) << shift ^ implicitBit; } else { const shift = @intCast(S, exp - significandBits); // Round to the nearest number after truncation mantissa = @intCast(Z, @bitCast(u32, abs_a)) >> shift ^ implicitBit; // Align to the left and check if the truncated part is halfway over const round = @bitCast(u32, abs_a) << @intCast(u5, 31 - shift); mantissa += @boolToInt(round > 0x80000000); // Tie to even mantissa += mantissa & 1; } // Use the addition instead of a or since we may have a carry from the // mantissa to the exponent var result = mantissa; result += (exp + exponentBias) << significandBits; result += sign_bit; return @bitCast(T, result); } pub extern fn __floatsisf(arg: i32) f32 { @setRuntimeSafety(builtin.is_test); return @inlineCall(floatsiXf, f32, arg); } pub extern fn __floatsidf(arg: i32) f64 { @setRuntimeSafety(builtin.is_test); return @inlineCall(floatsiXf, f64, arg); } pub extern fn __floatsitf(arg: i32) f128 { @setRuntimeSafety(builtin.is_test); return @inlineCall(floatsiXf, f128, arg); } fn test_one_floatsitf(a: i32, expected: u128) void { const r = __floatsitf(a); std.testing.expect(@bitCast(u128, r) == expected); } fn test_one_floatsidf(a: i32, expected: u64) void { const r = __floatsidf(a); std.testing.expect(@bitCast(u64, r) == expected); } fn test_one_floatsisf(a: i32, expected: u32) void { const r = __floatsisf(a); std.testing.expect(@bitCast(u32, r) == expected); } test "floatsidf" { test_one_floatsidf(0, 0x0000000000000000); test_one_floatsidf(1, 0x3ff0000000000000); test_one_floatsidf(-1, 0xbff0000000000000); test_one_floatsidf(0x7FFFFFFF, 0x41dfffffffc00000); test_one_floatsidf(@bitCast(i32, @intCast(u32, 0x80000000)), 0xc1e0000000000000); } test "floatsisf" { test_one_floatsisf(0, 0x00000000); test_one_floatsisf(1, 0x3f800000); test_one_floatsisf(-1, 0xbf800000); test_one_floatsisf(0x7FFFFFFF, 0x4f000000); test_one_floatsisf(@bitCast(i32, @intCast(u32, 0x80000000)), 0xcf000000); } test "floatsitf" { test_one_floatsitf(0, 0); test_one_floatsitf(0x7FFFFFFF, 0x401dfffffffc00000000000000000000); test_one_floatsitf(0x12345678, 0x401b2345678000000000000000000000); test_one_floatsitf(-0x12345678, 0xc01b2345678000000000000000000000); test_one_floatsitf(@bitCast(i32, @intCast(u32, 0xffffffff)), 0xbfff0000000000000000000000000000); test_one_floatsitf(@bitCast(i32, @intCast(u32, 0x80000000)), 0xc01e0000000000000000000000000000); }