const std = @import("../../std.zig"); const builtin = @import("builtin"); const debug = std.debug; const testing = std.testing; const math = std.math; const mem = std.mem; const Allocator = mem.Allocator; const ArrayList = std.ArrayList; const maxInt = std.math.maxInt; const minInt = std.math.minInt; const TypeId = builtin.TypeId; pub const Limb = usize; pub const DoubleLimb = @IntType(false, 2 * Limb.bit_count); pub const Log2Limb = math.Log2Int(Limb); comptime { debug.assert(math.floorPowerOfTwo(usize, Limb.bit_count) == Limb.bit_count); debug.assert(Limb.bit_count <= 64); // u128 set is unsupported debug.assert(Limb.is_signed == false); } pub const Int = struct { allocator: ?*Allocator, positive: bool, // - little-endian ordered // - len >= 1 always // - zero value -> len == 1 with limbs[0] == 0 limbs: []Limb, len: usize, const default_capacity = 4; pub fn init(allocator: *Allocator) !Int { return try Int.initCapacity(allocator, default_capacity); } pub fn initSet(allocator: *Allocator, value: var) !Int { var s = try Int.init(allocator); try s.set(value); return s; } pub fn initCapacity(allocator: *Allocator, capacity: usize) !Int { return Int{ .allocator = allocator, .positive = true, .limbs = block: { var limbs = try allocator.alloc(Limb, math.max(default_capacity, capacity)); limbs[0] = 0; break :block limbs; }, .len = 1, }; } // Initialize an Int directly from a fixed set of limb values. This is considered read-only // and cannot be used as a receiver argument to any functions. If this tries to allocate // at any point a panic will occur due to the null allocator. pub fn initFixed(limbs: []const Limb) Int { var self = Int{ .allocator = null, .positive = true, // Cast away the const, invalid use to pass as a pointer argument. .limbs = @intToPtr([*]Limb, @ptrToInt(limbs.ptr))[0..limbs.len], .len = limbs.len, }; self.normN(limbs.len); return self; } pub fn ensureCapacity(self: *Int, capacity: usize) !void { self.assertWritable(); if (capacity <= self.limbs.len) { return; } self.limbs = try self.allocator.?.realloc(self.limbs, capacity); } fn assertWritable(self: Int) void { if (self.allocator == null) { @panic("provided Int value is read-only but must be writable"); } } pub fn deinit(self: *Int) void { self.assertWritable(); self.allocator.?.free(self.limbs); self.* = undefined; } pub fn clone(other: Int) !Int { return Int{ .allocator = other.allocator, .positive = other.positive, .limbs = block: { var limbs = try other.allocator.?.alloc(Limb, other.len); mem.copy(Limb, limbs[0..], other.limbs[0..other.len]); break :block limbs; }, .len = other.len, }; } pub fn copy(self: *Int, other: Int) !void { self.assertWritable(); if (self.limbs.ptr == other.limbs.ptr) { return; } self.positive = other.positive; try self.ensureCapacity(other.len); mem.copy(Limb, self.limbs[0..], other.limbs[0..other.len]); self.len = other.len; } pub fn swap(self: *Int, other: *Int) void { self.assertWritable(); mem.swap(Int, self, other); } pub fn dump(self: Int) void { for (self.limbs) |limb| { debug.warn("{x} ", limb); } debug.warn("\n"); } pub fn negate(self: *Int) void { self.positive = !self.positive; } pub fn abs(self: *Int) void { self.positive = true; } pub fn isOdd(self: Int) bool { return self.limbs[0] & 1 != 0; } pub fn isEven(self: Int) bool { return !self.isOdd(); } // Returns the number of bits required to represent the absolute value of self. fn bitCountAbs(self: Int) usize { return (self.len - 1) * Limb.bit_count + (Limb.bit_count - @clz(self.limbs[self.len - 1])); } // Returns the number of bits required to represent the integer in twos-complement form. // // If the integer is negative the value returned is the number of bits needed by a signed // integer to represent the value. If positive the value is the number of bits for an // unsigned integer. Any unsigned integer will fit in the signed integer with bitcount // one greater than the returned value. // // e.g. -127 returns 8 as it will fit in an i8. 127 returns 7 since it fits in a u7. fn bitCountTwosComp(self: Int) usize { var bits = self.bitCountAbs(); // If the entire value has only one bit set (e.g. 0b100000000) then the negation in twos // complement requires one less bit. if (!self.positive) block: { bits += 1; if (@popCount(self.limbs[self.len - 1]) == 1) { for (self.limbs[0 .. self.len - 1]) |limb| { if (@popCount(limb) != 0) { break :block; } } bits -= 1; } } return bits; } pub fn fitsInTwosComp(self: Int, is_signed: bool, bit_count: usize) bool { if (self.eqZero()) { return true; } if (!is_signed and !self.positive) { return false; } const req_bits = self.bitCountTwosComp() + @boolToInt(self.positive and is_signed); return bit_count >= req_bits; } pub fn fits(self: Int, comptime T: type) bool { return self.fitsInTwosComp(T.is_signed, T.bit_count); } // Returns the approximate size of the integer in the given base. Negative values accommodate for // the minus sign. This is used for determining the number of characters needed to print the // value. It is inexact and will exceed the given value by 1-2 digits. pub fn sizeInBase(self: Int, base: usize) usize { const bit_count = usize(@boolToInt(!self.positive)) + self.bitCountAbs(); return (bit_count / math.log2(base)) + 1; } pub fn set(self: *Int, value: var) Allocator.Error!void { self.assertWritable(); const T = @typeOf(value); switch (@typeInfo(T)) { TypeId.Int => |info| { const UT = if (T.is_signed) @IntType(false, T.bit_count - 1) else T; try self.ensureCapacity(@sizeOf(UT) / @sizeOf(Limb)); self.positive = value >= 0; self.len = 0; var w_value: UT = if (value < 0) @intCast(UT, -value) else @intCast(UT, value); if (info.bits <= Limb.bit_count) { self.limbs[0] = Limb(w_value); self.len = 1; } else { var i: usize = 0; while (w_value != 0) : (i += 1) { self.limbs[i] = @truncate(Limb, w_value); self.len += 1; // TODO: shift == 64 at compile-time fails. Fails on u128 limbs. w_value >>= Limb.bit_count / 2; w_value >>= Limb.bit_count / 2; } } }, TypeId.ComptimeInt => { comptime var w_value = if (value < 0) -value else value; const req_limbs = @divFloor(math.log2(w_value), Limb.bit_count) + 1; try self.ensureCapacity(req_limbs); self.positive = value >= 0; self.len = req_limbs; if (w_value <= maxInt(Limb)) { self.limbs[0] = w_value; } else { const mask = (1 << Limb.bit_count) - 1; comptime var i = 0; inline while (w_value != 0) : (i += 1) { self.limbs[i] = w_value & mask; w_value >>= Limb.bit_count / 2; w_value >>= Limb.bit_count / 2; } } }, else => { @compileError("cannot set Int using type " ++ @typeName(T)); }, } } pub const ConvertError = error{ NegativeIntoUnsigned, TargetTooSmall, }; pub fn to(self: Int, comptime T: type) ConvertError!T { switch (@typeId(T)) { TypeId.Int => { const UT = @IntType(false, T.bit_count); if (self.bitCountTwosComp() > T.bit_count) { return error.TargetTooSmall; } var r: UT = 0; if (@sizeOf(UT) <= @sizeOf(Limb)) { r = @intCast(UT, self.limbs[0]); } else { for (self.limbs[0..self.len]) |_, ri| { const limb = self.limbs[self.len - ri - 1]; r <<= Limb.bit_count; r |= limb; } } if (!T.is_signed) { return if (self.positive) @intCast(T, r) else error.NegativeIntoUnsigned; } else { if (self.positive) { return @intCast(T, r); } else { if (math.cast(T, r)) |ok| { return -ok; } else |_| { return minInt(T); } } } }, else => { @compileError("cannot convert Int to type " ++ @typeName(T)); }, } } fn charToDigit(ch: u8, base: u8) !u8 { const d = switch (ch) { '0'...'9' => ch - '0', 'a'...'f' => (ch - 'a') + 0xa, else => return error.InvalidCharForDigit, }; return if (d < base) d else return error.DigitTooLargeForBase; } fn digitToChar(d: u8, base: u8) !u8 { if (d >= base) { return error.DigitTooLargeForBase; } return switch (d) { 0...9 => '0' + d, 0xa...0xf => ('a' - 0xa) + d, else => unreachable, }; } pub fn setString(self: *Int, base: u8, value: []const u8) !void { self.assertWritable(); if (base < 2 or base > 16) { return error.InvalidBase; } var i: usize = 0; var positive = true; if (value.len > 0 and value[0] == '-') { positive = false; i += 1; } const ap_base = Int.initFixed(([]Limb{base})[0..]); try self.set(0); for (value[i..]) |ch| { const d = try charToDigit(ch, base); const ap_d = Int.initFixed(([]Limb{d})[0..]); try self.mul(self.*, ap_base); try self.add(self.*, ap_d); } self.positive = positive; } /// TODO make this call format instead of the other way around pub fn toString(self: Int, allocator: *Allocator, base: u8) ![]const u8 { if (base < 2 or base > 16) { return error.InvalidBase; } var digits = ArrayList(u8).init(allocator); try digits.ensureCapacity(self.sizeInBase(base) + 1); defer digits.deinit(); if (self.eqZero()) { try digits.append('0'); return digits.toOwnedSlice(); } // Power of two: can do a single pass and use masks to extract digits. if (base & (base - 1) == 0) { const base_shift = math.log2_int(Limb, base); for (self.limbs[0..self.len]) |limb| { var shift: usize = 0; while (shift < Limb.bit_count) : (shift += base_shift) { const r = @intCast(u8, (limb >> @intCast(Log2Limb, shift)) & Limb(base - 1)); const ch = try digitToChar(r, base); try digits.append(ch); } } while (true) { // always will have a non-zero digit somewhere const c = digits.pop(); if (c != '0') { digits.append(c) catch unreachable; break; } } } // Non power-of-two: batch divisions per word size. else { const digits_per_limb = math.log(Limb, base, maxInt(Limb)); var limb_base: Limb = 1; var j: usize = 0; while (j < digits_per_limb) : (j += 1) { limb_base *= base; } var q = try self.clone(); q.positive = true; var r = try Int.init(allocator); var b = try Int.initSet(allocator, limb_base); while (q.len >= 2) { try Int.divTrunc(&q, &r, q, b); var r_word = r.limbs[0]; var i: usize = 0; while (i < digits_per_limb) : (i += 1) { const ch = try digitToChar(@intCast(u8, r_word % base), base); r_word /= base; try digits.append(ch); } } { debug.assert(q.len == 1); var r_word = q.limbs[0]; while (r_word != 0) { const ch = try digitToChar(@intCast(u8, r_word % base), base); r_word /= base; try digits.append(ch); } } } if (!self.positive) { try digits.append('-'); } var s = digits.toOwnedSlice(); mem.reverse(u8, s); return s; } /// for the std lib format function /// TODO make this non-allocating pub fn format( self: Int, comptime fmt: []const u8, context: var, comptime FmtError: type, output: fn (@typeOf(context), []const u8) FmtError!void, ) FmtError!void { // TODO look at fmt and support other bases const str = self.toString(self.allocator, 10) catch @panic("TODO make this non allocating"); defer self.allocator.free(str); return output(context, str); } // returns -1, 0, 1 if |a| < |b|, |a| == |b| or |a| > |b| respectively. pub fn cmpAbs(a: Int, b: Int) i8 { if (a.len < b.len) { return -1; } if (a.len > b.len) { return 1; } var i: usize = a.len - 1; while (i != 0) : (i -= 1) { if (a.limbs[i] != b.limbs[i]) { break; } } if (a.limbs[i] < b.limbs[i]) { return -1; } else if (a.limbs[i] > b.limbs[i]) { return 1; } else { return 0; } } // returns -1, 0, 1 if a < b, a == b or a > b respectively. pub fn cmp(a: Int, b: Int) i8 { if (a.positive != b.positive) { return if (a.positive) i8(1) else -1; } else { const r = cmpAbs(a, b); return if (a.positive) r else -r; } } // if a == 0 pub fn eqZero(a: Int) bool { return a.len == 1 and a.limbs[0] == 0; } // if |a| == |b| pub fn eqAbs(a: Int, b: Int) bool { return cmpAbs(a, b) == 0; } // if a == b pub fn eq(a: Int, b: Int) bool { return cmp(a, b) == 0; } // Normalize for a possible single carry digit. // // [1, 2, 3, 4, 0] -> [1, 2, 3, 4] // [1, 2, 3, 4, 5] -> [1, 2, 3, 4, 5] // [0] -> [0] fn norm1(r: *Int, length: usize) void { debug.assert(length > 0); debug.assert(length <= r.limbs.len); if (r.limbs[length - 1] == 0) { r.len = if (length > 1) length - 1 else 1; } else { r.len = length; } } // Normalize a possible sequence of leading zeros. // // [1, 2, 3, 4, 0] -> [1, 2, 3, 4] // [1, 2, 0, 0, 0] -> [1, 2] // [0, 0, 0, 0, 0] -> [0] fn normN(r: *Int, length: usize) void { debug.assert(length > 0); debug.assert(length <= r.limbs.len); var j = length; while (j > 0) : (j -= 1) { if (r.limbs[j - 1] != 0) { break; } } // Handle zero r.len = if (j != 0) j else 1; } // Cannot be used as a result argument to any function. fn readOnlyPositive(a: Int) Int { return Int{ .allocator = null, .positive = true, .limbs = a.limbs, .len = a.len, }; } // r = a + b pub fn add(r: *Int, a: Int, b: Int) Allocator.Error!void { r.assertWritable(); if (a.eqZero()) { try r.copy(b); return; } else if (b.eqZero()) { try r.copy(a); return; } if (a.positive != b.positive) { if (a.positive) { // (a) + (-b) => a - b try r.sub(a, readOnlyPositive(b)); } else { // (-a) + (b) => b - a try r.sub(b, readOnlyPositive(a)); } } else { if (a.len >= b.len) { try r.ensureCapacity(a.len + 1); lladd(r.limbs[0..], a.limbs[0..a.len], b.limbs[0..b.len]); r.norm1(a.len + 1); } else { try r.ensureCapacity(b.len + 1); lladd(r.limbs[0..], b.limbs[0..b.len], a.limbs[0..a.len]); r.norm1(b.len + 1); } r.positive = a.positive; } } // Knuth 4.3.1, Algorithm A. fn lladd(r: []Limb, a: []const Limb, b: []const Limb) void { @setRuntimeSafety(false); debug.assert(a.len != 0 and b.len != 0); debug.assert(a.len >= b.len); debug.assert(r.len >= a.len + 1); var i: usize = 0; var carry: Limb = 0; while (i < b.len) : (i += 1) { var c: Limb = 0; c += @boolToInt(@addWithOverflow(Limb, a[i], b[i], &r[i])); c += @boolToInt(@addWithOverflow(Limb, r[i], carry, &r[i])); carry = c; } while (i < a.len) : (i += 1) { carry = @boolToInt(@addWithOverflow(Limb, a[i], carry, &r[i])); } r[i] = carry; } // r = a - b pub fn sub(r: *Int, a: Int, b: Int) !void { r.assertWritable(); if (a.positive != b.positive) { if (a.positive) { // (a) - (-b) => a + b try r.add(a, readOnlyPositive(b)); } else { // (-a) - (b) => -(a + b) try r.add(readOnlyPositive(a), b); r.positive = false; } } else { if (a.positive) { // (a) - (b) => a - b if (a.cmp(b) >= 0) { try r.ensureCapacity(a.len + 1); llsub(r.limbs[0..], a.limbs[0..a.len], b.limbs[0..b.len]); r.normN(a.len); r.positive = true; } else { try r.ensureCapacity(b.len + 1); llsub(r.limbs[0..], b.limbs[0..b.len], a.limbs[0..a.len]); r.normN(b.len); r.positive = false; } } else { // (-a) - (-b) => -(a - b) if (a.cmp(b) < 0) { try r.ensureCapacity(a.len + 1); llsub(r.limbs[0..], a.limbs[0..a.len], b.limbs[0..b.len]); r.normN(a.len); r.positive = false; } else { try r.ensureCapacity(b.len + 1); llsub(r.limbs[0..], b.limbs[0..b.len], a.limbs[0..a.len]); r.normN(b.len); r.positive = true; } } } } // Knuth 4.3.1, Algorithm S. fn llsub(r: []Limb, a: []const Limb, b: []const Limb) void { @setRuntimeSafety(false); debug.assert(a.len != 0 and b.len != 0); debug.assert(a.len > b.len or (a.len == b.len and a[a.len - 1] >= b[b.len - 1])); debug.assert(r.len >= a.len); var i: usize = 0; var borrow: Limb = 0; while (i < b.len) : (i += 1) { var c: Limb = 0; c += @boolToInt(@subWithOverflow(Limb, a[i], b[i], &r[i])); c += @boolToInt(@subWithOverflow(Limb, r[i], borrow, &r[i])); borrow = c; } while (i < a.len) : (i += 1) { borrow = @boolToInt(@subWithOverflow(Limb, a[i], borrow, &r[i])); } debug.assert(borrow == 0); } // rma = a * b // // For greatest efficiency, ensure rma does not alias a or b. pub fn mul(rma: *Int, a: Int, b: Int) !void { rma.assertWritable(); var r = rma; var aliased = rma.limbs.ptr == a.limbs.ptr or rma.limbs.ptr == b.limbs.ptr; var sr: Int = undefined; if (aliased) { sr = try Int.initCapacity(rma.allocator.?, a.len + b.len); r = &sr; aliased = true; } defer if (aliased) { rma.swap(r); r.deinit(); }; try r.ensureCapacity(a.len + b.len); if (a.len >= b.len) { llmul(r.limbs, a.limbs[0..a.len], b.limbs[0..b.len]); } else { llmul(r.limbs, b.limbs[0..b.len], a.limbs[0..a.len]); } r.positive = a.positive == b.positive; r.normN(a.len + b.len); } // a + b * c + *carry, sets carry to the overflow bits pub fn addMulLimbWithCarry(a: Limb, b: Limb, c: Limb, carry: *Limb) Limb { var r1: Limb = undefined; // r1 = a + *carry const c1: Limb = @boolToInt(@addWithOverflow(Limb, a, carry.*, &r1)); // r2 = b * c const bc = DoubleLimb(math.mulWide(Limb, b, c)); const r2 = @truncate(Limb, bc); const c2 = @truncate(Limb, bc >> Limb.bit_count); // r1 = r1 + r2 const c3: Limb = @boolToInt(@addWithOverflow(Limb, r1, r2, &r1)); // This never overflows, c1, c3 are either 0 or 1 and if both are 1 then // c2 is at least <= maxInt(Limb) - 2. carry.* = c1 + c2 + c3; return r1; } // Knuth 4.3.1, Algorithm M. // // r MUST NOT alias any of a or b. fn llmul(r: []Limb, a: []const Limb, b: []const Limb) void { @setRuntimeSafety(false); debug.assert(a.len >= b.len); debug.assert(r.len >= a.len + b.len); mem.set(Limb, r[0 .. a.len + b.len], 0); var i: usize = 0; while (i < a.len) : (i += 1) { var carry: Limb = 0; var j: usize = 0; while (j < b.len) : (j += 1) { r[i + j] = @inlineCall(addMulLimbWithCarry, r[i + j], a[i], b[j], &carry); } r[i + j] = carry; } } pub fn divFloor(q: *Int, r: *Int, a: Int, b: Int) !void { try div(q, r, a, b); // Trunc -> Floor. if (!q.positive) { const one = Int.initFixed(([]Limb{1})[0..]); try q.sub(q.*, one); try r.add(q.*, one); } r.positive = b.positive; } pub fn divTrunc(q: *Int, r: *Int, a: Int, b: Int) !void { try div(q, r, a, b); r.positive = a.positive; } // Truncates by default. fn div(quo: *Int, rem: *Int, a: Int, b: Int) !void { quo.assertWritable(); rem.assertWritable(); if (b.eqZero()) { @panic("division by zero"); } if (quo == rem) { @panic("quo and rem cannot be same variable"); } if (a.cmpAbs(b) < 0) { // quo may alias a so handle rem first try rem.copy(a); rem.positive = a.positive == b.positive; quo.positive = true; quo.len = 1; quo.limbs[0] = 0; return; } if (b.len == 1) { try quo.ensureCapacity(a.len); lldiv1(quo.limbs[0..], &rem.limbs[0], a.limbs[0..a.len], b.limbs[0]); quo.norm1(a.len); quo.positive = a.positive == b.positive; rem.len = 1; rem.positive = true; } else { // x and y are modified during division var x = try a.clone(); defer x.deinit(); var y = try b.clone(); defer y.deinit(); // x may grow one limb during normalization try quo.ensureCapacity(a.len + y.len); try divN(quo.allocator.?, quo, rem, &x, &y); quo.positive = a.positive == b.positive; } } // Knuth 4.3.1, Exercise 16. fn lldiv1(quo: []Limb, rem: *Limb, a: []const Limb, b: Limb) void { @setRuntimeSafety(false); debug.assert(a.len > 1 or a[0] >= b); debug.assert(quo.len >= a.len); rem.* = 0; for (a) |_, ri| { const i = a.len - ri - 1; const pdiv = ((DoubleLimb(rem.*) << Limb.bit_count) | a[i]); if (pdiv == 0) { quo[i] = 0; rem.* = 0; } else if (pdiv < b) { quo[i] = 0; rem.* = @truncate(Limb, pdiv); } else if (pdiv == b) { quo[i] = 1; rem.* = 0; } else { quo[i] = @truncate(Limb, @divTrunc(pdiv, b)); rem.* = @truncate(Limb, pdiv - (quo[i] *% b)); } } } // Handbook of Applied Cryptography, 14.20 // // x = qy + r where 0 <= r < y fn divN(allocator: *Allocator, q: *Int, r: *Int, x: *Int, y: *Int) !void { debug.assert(y.len >= 2); debug.assert(x.len >= y.len); debug.assert(q.limbs.len >= x.len + y.len - 1); debug.assert(default_capacity >= 3); // see 3.2 var tmp = try Int.init(allocator); defer tmp.deinit(); // Normalize so y > Limb.bit_count / 2 (i.e. leading bit is set) const norm_shift = @clz(y.limbs[y.len - 1]); try x.shiftLeft(x.*, norm_shift); try y.shiftLeft(y.*, norm_shift); const n = x.len - 1; const t = y.len - 1; // 1. q.len = n - t + 1; mem.set(Limb, q.limbs[0..q.len], 0); // 2. try tmp.shiftLeft(y.*, Limb.bit_count * (n - t)); while (x.cmp(tmp) >= 0) { q.limbs[n - t] += 1; try x.sub(x.*, tmp); } // 3. var i = n; while (i > t) : (i -= 1) { // 3.1 if (x.limbs[i] == y.limbs[t]) { q.limbs[i - t - 1] = maxInt(Limb); } else { const num = (DoubleLimb(x.limbs[i]) << Limb.bit_count) | DoubleLimb(x.limbs[i - 1]); const z = @intCast(Limb, num / DoubleLimb(y.limbs[t])); q.limbs[i - t - 1] = if (z > maxInt(Limb)) maxInt(Limb) else Limb(z); } // 3.2 tmp.limbs[0] = if (i >= 2) x.limbs[i - 2] else 0; tmp.limbs[1] = if (i >= 1) x.limbs[i - 1] else 0; tmp.limbs[2] = x.limbs[i]; tmp.normN(3); while (true) { // 2x1 limb multiplication unrolled against single-limb q[i-t-1] var carry: Limb = 0; r.limbs[0] = addMulLimbWithCarry(0, if (t >= 1) y.limbs[t - 1] else 0, q.limbs[i - t - 1], &carry); r.limbs[1] = addMulLimbWithCarry(0, y.limbs[t], q.limbs[i - t - 1], &carry); r.limbs[2] = carry; r.normN(3); if (r.cmpAbs(tmp) <= 0) { break; } q.limbs[i - t - 1] -= 1; } // 3.3 try tmp.set(q.limbs[i - t - 1]); try tmp.mul(tmp, y.*); try tmp.shiftLeft(tmp, Limb.bit_count * (i - t - 1)); try x.sub(x.*, tmp); if (!x.positive) { try tmp.shiftLeft(y.*, Limb.bit_count * (i - t - 1)); try x.add(x.*, tmp); q.limbs[i - t - 1] -= 1; } } // Denormalize q.normN(q.len); try r.shiftRight(x.*, norm_shift); r.normN(r.len); } // r = a << shift, in other words, r = a * 2^shift pub fn shiftLeft(r: *Int, a: Int, shift: usize) !void { r.assertWritable(); try r.ensureCapacity(a.len + (shift / Limb.bit_count) + 1); llshl(r.limbs[0..], a.limbs[0..a.len], shift); r.norm1(a.len + (shift / Limb.bit_count) + 1); r.positive = a.positive; } fn llshl(r: []Limb, a: []const Limb, shift: usize) void { @setRuntimeSafety(false); debug.assert(a.len >= 1); debug.assert(r.len >= a.len + (shift / Limb.bit_count) + 1); const limb_shift = shift / Limb.bit_count + 1; const interior_limb_shift = @intCast(Log2Limb, shift % Limb.bit_count); var carry: Limb = 0; var i: usize = 0; while (i < a.len) : (i += 1) { const src_i = a.len - i - 1; const dst_i = src_i + limb_shift; const src_digit = a[src_i]; r[dst_i] = carry | @inlineCall(math.shr, Limb, src_digit, Limb.bit_count - @intCast(Limb, interior_limb_shift)); carry = (src_digit << interior_limb_shift); } r[limb_shift - 1] = carry; mem.set(Limb, r[0 .. limb_shift - 1], 0); } // r = a >> shift pub fn shiftRight(r: *Int, a: Int, shift: usize) !void { r.assertWritable(); if (a.len <= shift / Limb.bit_count) { r.len = 1; r.limbs[0] = 0; r.positive = true; return; } try r.ensureCapacity(a.len - (shift / Limb.bit_count)); const r_len = llshr(r.limbs[0..], a.limbs[0..a.len], shift); r.len = a.len - (shift / Limb.bit_count); r.positive = a.positive; } fn llshr(r: []Limb, a: []const Limb, shift: usize) void { @setRuntimeSafety(false); debug.assert(a.len >= 1); debug.assert(r.len >= a.len - (shift / Limb.bit_count)); const limb_shift = shift / Limb.bit_count; const interior_limb_shift = @intCast(Log2Limb, shift % Limb.bit_count); var carry: Limb = 0; var i: usize = 0; while (i < a.len - limb_shift) : (i += 1) { const src_i = a.len - i - 1; const dst_i = src_i - limb_shift; const src_digit = a[src_i]; r[dst_i] = carry | (src_digit >> interior_limb_shift); carry = @inlineCall(math.shl, Limb, src_digit, Limb.bit_count - @intCast(Limb, interior_limb_shift)); } } // r = a | b pub fn bitOr(r: *Int, a: Int, b: Int) !void { r.assertWritable(); if (a.len > b.len) { try r.ensureCapacity(a.len); llor(r.limbs[0..], a.limbs[0..a.len], b.limbs[0..b.len]); r.len = a.len; } else { try r.ensureCapacity(b.len); llor(r.limbs[0..], b.limbs[0..b.len], a.limbs[0..a.len]); r.len = b.len; } } fn llor(r: []Limb, a: []const Limb, b: []const Limb) void { @setRuntimeSafety(false); debug.assert(r.len >= a.len); debug.assert(a.len >= b.len); var i: usize = 0; while (i < b.len) : (i += 1) { r[i] = a[i] | b[i]; } while (i < a.len) : (i += 1) { r[i] = a[i]; } } // r = a & b pub fn bitAnd(r: *Int, a: Int, b: Int) !void { r.assertWritable(); if (a.len > b.len) { try r.ensureCapacity(b.len); lland(r.limbs[0..], a.limbs[0..a.len], b.limbs[0..b.len]); r.normN(b.len); } else { try r.ensureCapacity(a.len); lland(r.limbs[0..], b.limbs[0..b.len], a.limbs[0..a.len]); r.normN(a.len); } } fn lland(r: []Limb, a: []const Limb, b: []const Limb) void { @setRuntimeSafety(false); debug.assert(r.len >= b.len); debug.assert(a.len >= b.len); var i: usize = 0; while (i < b.len) : (i += 1) { r[i] = a[i] & b[i]; } } // r = a ^ b pub fn bitXor(r: *Int, a: Int, b: Int) !void { r.assertWritable(); if (a.len > b.len) { try r.ensureCapacity(a.len); llxor(r.limbs[0..], a.limbs[0..a.len], b.limbs[0..b.len]); r.normN(a.len); } else { try r.ensureCapacity(b.len); llxor(r.limbs[0..], b.limbs[0..b.len], a.limbs[0..a.len]); r.normN(b.len); } } fn llxor(r: []Limb, a: []const Limb, b: []const Limb) void { @setRuntimeSafety(false); debug.assert(r.len >= a.len); debug.assert(a.len >= b.len); var i: usize = 0; while (i < b.len) : (i += 1) { r[i] = a[i] ^ b[i]; } while (i < a.len) : (i += 1) { r[i] = a[i]; } } }; // NOTE: All the following tests assume the max machine-word will be 64-bit. // // They will still run on larger than this and should pass, but the multi-limb code-paths // may be untested in some cases. const al = debug.global_allocator; test "big.int comptime_int set" { comptime var s = 0xefffffff00000001eeeeeeefaaaaaaab; var a = try Int.initSet(al, s); const s_limb_count = 128 / Limb.bit_count; comptime var i: usize = 0; inline while (i < s_limb_count) : (i += 1) { const result = Limb(s & maxInt(Limb)); s >>= Limb.bit_count / 2; s >>= Limb.bit_count / 2; testing.expect(a.limbs[i] == result); } } test "big.int comptime_int set negative" { var a = try Int.initSet(al, -10); testing.expect(a.limbs[0] == 10); testing.expect(a.positive == false); } test "big.int int set unaligned small" { var a = try Int.initSet(al, u7(45)); testing.expect(a.limbs[0] == 45); testing.expect(a.positive == true); } test "big.int comptime_int to" { const a = try Int.initSet(al, 0xefffffff00000001eeeeeeefaaaaaaab); testing.expect((try a.to(u128)) == 0xefffffff00000001eeeeeeefaaaaaaab); } test "big.int sub-limb to" { const a = try Int.initSet(al, 10); testing.expect((try a.to(u8)) == 10); } test "big.int to target too small error" { const a = try Int.initSet(al, 0xffffffff); testing.expectError(error.TargetTooSmall, a.to(u8)); } test "big.int norm1" { var a = try Int.init(al); try a.ensureCapacity(8); a.limbs[0] = 1; a.limbs[1] = 2; a.limbs[2] = 3; a.limbs[3] = 0; a.norm1(4); testing.expect(a.len == 3); a.limbs[0] = 1; a.limbs[1] = 2; a.limbs[2] = 3; a.norm1(3); testing.expect(a.len == 3); a.limbs[0] = 0; a.limbs[1] = 0; a.norm1(2); testing.expect(a.len == 1); a.limbs[0] = 0; a.norm1(1); testing.expect(a.len == 1); } test "big.int normN" { var a = try Int.init(al); try a.ensureCapacity(8); a.limbs[0] = 1; a.limbs[1] = 2; a.limbs[2] = 0; a.limbs[3] = 0; a.normN(4); testing.expect(a.len == 2); a.limbs[0] = 1; a.limbs[1] = 2; a.limbs[2] = 3; a.normN(3); testing.expect(a.len == 3); a.limbs[0] = 0; a.limbs[1] = 0; a.limbs[2] = 0; a.limbs[3] = 0; a.normN(4); testing.expect(a.len == 1); a.limbs[0] = 0; a.normN(1); testing.expect(a.len == 1); } test "big.int parity" { var a = try Int.init(al); try a.set(0); testing.expect(a.isEven()); testing.expect(!a.isOdd()); try a.set(7); testing.expect(!a.isEven()); testing.expect(a.isOdd()); } test "big.int bitcount + sizeInBase" { var a = try Int.init(al); try a.set(0b100); testing.expect(a.bitCountAbs() == 3); testing.expect(a.sizeInBase(2) >= 3); testing.expect(a.sizeInBase(10) >= 1); a.negate(); testing.expect(a.bitCountAbs() == 3); testing.expect(a.sizeInBase(2) >= 4); testing.expect(a.sizeInBase(10) >= 2); try a.set(0xffffffff); testing.expect(a.bitCountAbs() == 32); testing.expect(a.sizeInBase(2) >= 32); testing.expect(a.sizeInBase(10) >= 10); try a.shiftLeft(a, 5000); testing.expect(a.bitCountAbs() == 5032); testing.expect(a.sizeInBase(2) >= 5032); a.positive = false; testing.expect(a.bitCountAbs() == 5032); testing.expect(a.sizeInBase(2) >= 5033); } test "big.int bitcount/to" { var a = try Int.init(al); try a.set(0); testing.expect(a.bitCountTwosComp() == 0); // TODO: stack smashing // testing.expect((try a.to(u0)) == 0); // TODO: sigsegv // testing.expect((try a.to(i0)) == 0); try a.set(-1); testing.expect(a.bitCountTwosComp() == 1); testing.expect((try a.to(i1)) == -1); try a.set(-8); testing.expect(a.bitCountTwosComp() == 4); testing.expect((try a.to(i4)) == -8); try a.set(127); testing.expect(a.bitCountTwosComp() == 7); testing.expect((try a.to(u7)) == 127); try a.set(-128); testing.expect(a.bitCountTwosComp() == 8); testing.expect((try a.to(i8)) == -128); try a.set(-129); testing.expect(a.bitCountTwosComp() == 9); testing.expect((try a.to(i9)) == -129); } test "big.int fits" { var a = try Int.init(al); try a.set(0); testing.expect(a.fits(u0)); testing.expect(a.fits(i0)); try a.set(255); testing.expect(!a.fits(u0)); testing.expect(!a.fits(u1)); testing.expect(!a.fits(i8)); testing.expect(a.fits(u8)); testing.expect(a.fits(u9)); testing.expect(a.fits(i9)); try a.set(-128); testing.expect(!a.fits(i7)); testing.expect(a.fits(i8)); testing.expect(a.fits(i9)); testing.expect(!a.fits(u9)); try a.set(0x1ffffffffeeeeeeee); testing.expect(!a.fits(u32)); testing.expect(!a.fits(u64)); testing.expect(a.fits(u65)); } test "big.int string set" { var a = try Int.init(al); try a.setString(10, "120317241209124781241290847124"); testing.expect((try a.to(u128)) == 120317241209124781241290847124); } test "big.int string negative" { var a = try Int.init(al); try a.setString(10, "-1023"); testing.expect((try a.to(i32)) == -1023); } test "big.int string set bad char error" { var a = try Int.init(al); testing.expectError(error.InvalidCharForDigit, a.setString(10, "x")); } test "big.int string set bad base error" { var a = try Int.init(al); testing.expectError(error.InvalidBase, a.setString(45, "10")); } test "big.int string to" { const a = try Int.initSet(al, 120317241209124781241290847124); const as = try a.toString(al, 10); const es = "120317241209124781241290847124"; testing.expect(mem.eql(u8, as, es)); } test "big.int string to base base error" { const a = try Int.initSet(al, 0xffffffff); testing.expectError(error.InvalidBase, a.toString(al, 45)); } test "big.int string to base 2" { const a = try Int.initSet(al, -0b1011); const as = try a.toString(al, 2); const es = "-1011"; testing.expect(mem.eql(u8, as, es)); } test "big.int string to base 16" { const a = try Int.initSet(al, 0xefffffff00000001eeeeeeefaaaaaaab); const as = try a.toString(al, 16); const es = "efffffff00000001eeeeeeefaaaaaaab"; testing.expect(mem.eql(u8, as, es)); } test "big.int neg string to" { const a = try Int.initSet(al, -123907434); const as = try a.toString(al, 10); const es = "-123907434"; testing.expect(mem.eql(u8, as, es)); } test "big.int zero string to" { const a = try Int.initSet(al, 0); const as = try a.toString(al, 10); const es = "0"; testing.expect(mem.eql(u8, as, es)); } test "big.int clone" { var a = try Int.initSet(al, 1234); const b = try a.clone(); testing.expect((try a.to(u32)) == 1234); testing.expect((try b.to(u32)) == 1234); try a.set(77); testing.expect((try a.to(u32)) == 77); testing.expect((try b.to(u32)) == 1234); } test "big.int swap" { var a = try Int.initSet(al, 1234); var b = try Int.initSet(al, 5678); testing.expect((try a.to(u32)) == 1234); testing.expect((try b.to(u32)) == 5678); a.swap(&b); testing.expect((try a.to(u32)) == 5678); testing.expect((try b.to(u32)) == 1234); } test "big.int to negative" { var a = try Int.initSet(al, -10); testing.expect((try a.to(i32)) == -10); } test "big.int compare" { var a = try Int.initSet(al, -11); var b = try Int.initSet(al, 10); testing.expect(a.cmpAbs(b) == 1); testing.expect(a.cmp(b) == -1); } test "big.int compare similar" { var a = try Int.initSet(al, 0xffffffffeeeeeeeeffffffffeeeeeeee); var b = try Int.initSet(al, 0xffffffffeeeeeeeeffffffffeeeeeeef); testing.expect(a.cmpAbs(b) == -1); testing.expect(b.cmpAbs(a) == 1); } test "big.int compare different limb size" { var a = try Int.initSet(al, maxInt(Limb) + 1); var b = try Int.initSet(al, 1); testing.expect(a.cmpAbs(b) == 1); testing.expect(b.cmpAbs(a) == -1); } test "big.int compare multi-limb" { var a = try Int.initSet(al, -0x7777777799999999ffffeeeeffffeeeeffffeeeef); var b = try Int.initSet(al, 0x7777777799999999ffffeeeeffffeeeeffffeeeee); testing.expect(a.cmpAbs(b) == 1); testing.expect(a.cmp(b) == -1); } test "big.int equality" { var a = try Int.initSet(al, 0xffffffff1); var b = try Int.initSet(al, -0xffffffff1); testing.expect(a.eqAbs(b)); testing.expect(!a.eq(b)); } test "big.int abs" { var a = try Int.initSet(al, -5); a.abs(); testing.expect((try a.to(u32)) == 5); a.abs(); testing.expect((try a.to(u32)) == 5); } test "big.int negate" { var a = try Int.initSet(al, 5); a.negate(); testing.expect((try a.to(i32)) == -5); a.negate(); testing.expect((try a.to(i32)) == 5); } test "big.int add single-single" { var a = try Int.initSet(al, 50); var b = try Int.initSet(al, 5); var c = try Int.init(al); try c.add(a, b); testing.expect((try c.to(u32)) == 55); } test "big.int add multi-single" { var a = try Int.initSet(al, maxInt(Limb) + 1); var b = try Int.initSet(al, 1); var c = try Int.init(al); try c.add(a, b); testing.expect((try c.to(DoubleLimb)) == maxInt(Limb) + 2); try c.add(b, a); testing.expect((try c.to(DoubleLimb)) == maxInt(Limb) + 2); } test "big.int add multi-multi" { const op1 = 0xefefefef7f7f7f7f; const op2 = 0xfefefefe9f9f9f9f; var a = try Int.initSet(al, op1); var b = try Int.initSet(al, op2); var c = try Int.init(al); try c.add(a, b); testing.expect((try c.to(u128)) == op1 + op2); } test "big.int add zero-zero" { var a = try Int.initSet(al, 0); var b = try Int.initSet(al, 0); var c = try Int.init(al); try c.add(a, b); testing.expect((try c.to(u32)) == 0); } test "big.int add alias multi-limb nonzero-zero" { const op1 = 0xffffffff777777771; var a = try Int.initSet(al, op1); var b = try Int.initSet(al, 0); try a.add(a, b); testing.expect((try a.to(u128)) == op1); } test "big.int add sign" { var a = try Int.init(al); const one = try Int.initSet(al, 1); const two = try Int.initSet(al, 2); const neg_one = try Int.initSet(al, -1); const neg_two = try Int.initSet(al, -2); try a.add(one, two); testing.expect((try a.to(i32)) == 3); try a.add(neg_one, two); testing.expect((try a.to(i32)) == 1); try a.add(one, neg_two); testing.expect((try a.to(i32)) == -1); try a.add(neg_one, neg_two); testing.expect((try a.to(i32)) == -3); } test "big.int sub single-single" { var a = try Int.initSet(al, 50); var b = try Int.initSet(al, 5); var c = try Int.init(al); try c.sub(a, b); testing.expect((try c.to(u32)) == 45); } test "big.int sub multi-single" { var a = try Int.initSet(al, maxInt(Limb) + 1); var b = try Int.initSet(al, 1); var c = try Int.init(al); try c.sub(a, b); testing.expect((try c.to(Limb)) == maxInt(Limb)); } test "big.int sub multi-multi" { const op1 = 0xefefefefefefefefefefefef; const op2 = 0xabababababababababababab; var a = try Int.initSet(al, op1); var b = try Int.initSet(al, op2); var c = try Int.init(al); try c.sub(a, b); testing.expect((try c.to(u128)) == op1 - op2); } test "big.int sub equal" { var a = try Int.initSet(al, 0x11efefefefefefefefefefefef); var b = try Int.initSet(al, 0x11efefefefefefefefefefefef); var c = try Int.init(al); try c.sub(a, b); testing.expect((try c.to(u32)) == 0); } test "big.int sub sign" { var a = try Int.init(al); const one = try Int.initSet(al, 1); const two = try Int.initSet(al, 2); const neg_one = try Int.initSet(al, -1); const neg_two = try Int.initSet(al, -2); try a.sub(one, two); testing.expect((try a.to(i32)) == -1); try a.sub(neg_one, two); testing.expect((try a.to(i32)) == -3); try a.sub(one, neg_two); testing.expect((try a.to(i32)) == 3); try a.sub(neg_one, neg_two); testing.expect((try a.to(i32)) == 1); try a.sub(neg_two, neg_one); testing.expect((try a.to(i32)) == -1); } test "big.int mul single-single" { var a = try Int.initSet(al, 50); var b = try Int.initSet(al, 5); var c = try Int.init(al); try c.mul(a, b); testing.expect((try c.to(u64)) == 250); } test "big.int mul multi-single" { var a = try Int.initSet(al, maxInt(Limb)); var b = try Int.initSet(al, 2); var c = try Int.init(al); try c.mul(a, b); testing.expect((try c.to(DoubleLimb)) == 2 * maxInt(Limb)); } test "big.int mul multi-multi" { const op1 = 0x998888efefefefefefefef; const op2 = 0x333000abababababababab; var a = try Int.initSet(al, op1); var b = try Int.initSet(al, op2); var c = try Int.init(al); try c.mul(a, b); testing.expect((try c.to(u256)) == op1 * op2); } test "big.int mul alias r with a" { var a = try Int.initSet(al, maxInt(Limb)); var b = try Int.initSet(al, 2); try a.mul(a, b); testing.expect((try a.to(DoubleLimb)) == 2 * maxInt(Limb)); } test "big.int mul alias r with b" { var a = try Int.initSet(al, maxInt(Limb)); var b = try Int.initSet(al, 2); try a.mul(b, a); testing.expect((try a.to(DoubleLimb)) == 2 * maxInt(Limb)); } test "big.int mul alias r with a and b" { var a = try Int.initSet(al, maxInt(Limb)); try a.mul(a, a); testing.expect((try a.to(DoubleLimb)) == maxInt(Limb) * maxInt(Limb)); } test "big.int mul a*0" { var a = try Int.initSet(al, 0xefefefefefefefef); var b = try Int.initSet(al, 0); var c = try Int.init(al); try c.mul(a, b); testing.expect((try c.to(u32)) == 0); } test "big.int mul 0*0" { var a = try Int.initSet(al, 0); var b = try Int.initSet(al, 0); var c = try Int.init(al); try c.mul(a, b); testing.expect((try c.to(u32)) == 0); } test "big.int div single-single no rem" { var a = try Int.initSet(al, 50); var b = try Int.initSet(al, 5); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u32)) == 10); testing.expect((try r.to(u32)) == 0); } test "big.int div single-single with rem" { var a = try Int.initSet(al, 49); var b = try Int.initSet(al, 5); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u32)) == 9); testing.expect((try r.to(u32)) == 4); } test "big.int div multi-single no rem" { const op1 = 0xffffeeeeddddcccc; const op2 = 34; var a = try Int.initSet(al, op1); var b = try Int.initSet(al, op2); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u64)) == op1 / op2); testing.expect((try r.to(u64)) == 0); } test "big.int div multi-single with rem" { const op1 = 0xffffeeeeddddcccf; const op2 = 34; var a = try Int.initSet(al, op1); var b = try Int.initSet(al, op2); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u64)) == op1 / op2); testing.expect((try r.to(u64)) == 3); } test "big.int div multi>2-single" { const op1 = 0xfefefefefefefefefefefefefefefefe; const op2 = 0xefab8; var a = try Int.initSet(al, op1); var b = try Int.initSet(al, op2); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u128)) == op1 / op2); testing.expect((try r.to(u32)) == 0x3e4e); } test "big.int div single-single q < r" { var a = try Int.initSet(al, 0x0078f432); var b = try Int.initSet(al, 0x01000000); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u64)) == 0); testing.expect((try r.to(u64)) == 0x0078f432); } test "big.int div single-single q == r" { var a = try Int.initSet(al, 10); var b = try Int.initSet(al, 10); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u64)) == 1); testing.expect((try r.to(u64)) == 0); } test "big.int div q=0 alias" { var a = try Int.initSet(al, 3); var b = try Int.initSet(al, 10); try Int.divTrunc(&a, &b, a, b); testing.expect((try a.to(u64)) == 0); testing.expect((try b.to(u64)) == 3); } test "big.int div multi-multi q < r" { const op1 = 0x1ffffffff0078f432; const op2 = 0x1ffffffff01000000; var a = try Int.initSet(al, op1); var b = try Int.initSet(al, op2); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u128)) == 0); testing.expect((try r.to(u128)) == op1); } test "big.int div trunc single-single +/+" { const u: i32 = 5; const v: i32 = 3; var a = try Int.initSet(al, u); var b = try Int.initSet(al, v); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); // n = q * d + r // 5 = 1 * 3 + 2 const eq = @divTrunc(u, v); const er = @mod(u, v); testing.expect((try q.to(i32)) == eq); testing.expect((try r.to(i32)) == er); } test "big.int div trunc single-single -/+" { const u: i32 = -5; const v: i32 = 3; var a = try Int.initSet(al, u); var b = try Int.initSet(al, v); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); // n = q * d + r // -5 = 1 * -3 - 2 const eq = -1; const er = -2; testing.expect((try q.to(i32)) == eq); testing.expect((try r.to(i32)) == er); } test "big.int div trunc single-single +/-" { const u: i32 = 5; const v: i32 = -3; var a = try Int.initSet(al, u); var b = try Int.initSet(al, v); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); // n = q * d + r // 5 = -1 * -3 + 2 const eq = -1; const er = 2; testing.expect((try q.to(i32)) == eq); testing.expect((try r.to(i32)) == er); } test "big.int div trunc single-single -/-" { const u: i32 = -5; const v: i32 = -3; var a = try Int.initSet(al, u); var b = try Int.initSet(al, v); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); // n = q * d + r // -5 = 1 * -3 - 2 const eq = 1; const er = -2; testing.expect((try q.to(i32)) == eq); testing.expect((try r.to(i32)) == er); } test "big.int div floor single-single +/+" { const u: i32 = 5; const v: i32 = 3; var a = try Int.initSet(al, u); var b = try Int.initSet(al, v); var q = try Int.init(al); var r = try Int.init(al); try Int.divFloor(&q, &r, a, b); // n = q * d + r // 5 = 1 * 3 + 2 const eq = 1; const er = 2; testing.expect((try q.to(i32)) == eq); testing.expect((try r.to(i32)) == er); } test "big.int div floor single-single -/+" { const u: i32 = -5; const v: i32 = 3; var a = try Int.initSet(al, u); var b = try Int.initSet(al, v); var q = try Int.init(al); var r = try Int.init(al); try Int.divFloor(&q, &r, a, b); // n = q * d + r // -5 = -2 * 3 + 1 const eq = -2; const er = 1; testing.expect((try q.to(i32)) == eq); testing.expect((try r.to(i32)) == er); } test "big.int div floor single-single +/-" { const u: i32 = 5; const v: i32 = -3; var a = try Int.initSet(al, u); var b = try Int.initSet(al, v); var q = try Int.init(al); var r = try Int.init(al); try Int.divFloor(&q, &r, a, b); // n = q * d + r // 5 = -2 * -3 - 1 const eq = -2; const er = -1; testing.expect((try q.to(i32)) == eq); testing.expect((try r.to(i32)) == er); } test "big.int div floor single-single -/-" { const u: i32 = -5; const v: i32 = -3; var a = try Int.initSet(al, u); var b = try Int.initSet(al, v); var q = try Int.init(al); var r = try Int.init(al); try Int.divFloor(&q, &r, a, b); // n = q * d + r // -5 = 2 * -3 + 1 const eq = 1; const er = -2; testing.expect((try q.to(i32)) == eq); testing.expect((try r.to(i32)) == er); } test "big.int div multi-multi with rem" { var a = try Int.initSet(al, 0x8888999911110000ffffeeeeddddccccbbbbaaaa9999); var b = try Int.initSet(al, 0x99990000111122223333); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u128)) == 0xe38f38e39161aaabd03f0f1b); testing.expect((try r.to(u128)) == 0x28de0acacd806823638); } test "big.int div multi-multi no rem" { var a = try Int.initSet(al, 0x8888999911110000ffffeeeedb4fec200ee3a4286361); var b = try Int.initSet(al, 0x99990000111122223333); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u128)) == 0xe38f38e39161aaabd03f0f1b); testing.expect((try r.to(u128)) == 0); } test "big.int div multi-multi (2 branch)" { var a = try Int.initSet(al, 0x866666665555555588888887777777761111111111111111); var b = try Int.initSet(al, 0x86666666555555554444444433333333); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u128)) == 0x10000000000000000); testing.expect((try r.to(u128)) == 0x44444443444444431111111111111111); } test "big.int div multi-multi (3.1/3.3 branch)" { var a = try Int.initSet(al, 0x11111111111111111111111111111111111111111111111111111111111111); var b = try Int.initSet(al, 0x1111111111111111111111111111111111111111171); var q = try Int.init(al); var r = try Int.init(al); try Int.divTrunc(&q, &r, a, b); testing.expect((try q.to(u128)) == 0xfffffffffffffffffff); testing.expect((try r.to(u256)) == 0x1111111111111111111110b12222222222222222282); } test "big.int shift-right single" { var a = try Int.initSet(al, 0xffff0000); try a.shiftRight(a, 16); testing.expect((try a.to(u32)) == 0xffff); } test "big.int shift-right multi" { var a = try Int.initSet(al, 0xffff0000eeee1111dddd2222cccc3333); try a.shiftRight(a, 67); testing.expect((try a.to(u64)) == 0x1fffe0001dddc222); } test "big.int shift-left single" { var a = try Int.initSet(al, 0xffff); try a.shiftLeft(a, 16); testing.expect((try a.to(u64)) == 0xffff0000); } test "big.int shift-left multi" { var a = try Int.initSet(al, 0x1fffe0001dddc222); try a.shiftLeft(a, 67); testing.expect((try a.to(u128)) == 0xffff0000eeee11100000000000000000); } test "big.int shift-right negative" { var a = try Int.init(al); try a.shiftRight(try Int.initSet(al, -20), 2); testing.expect((try a.to(i32)) == -20 >> 2); try a.shiftRight(try Int.initSet(al, -5), 10); testing.expect((try a.to(i32)) == -5 >> 10); } test "big.int shift-left negative" { var a = try Int.init(al); try a.shiftRight(try Int.initSet(al, -10), 1232); testing.expect((try a.to(i32)) == -10 >> 1232); } test "big.int bitwise and simple" { var a = try Int.initSet(al, 0xffffffff11111111); var b = try Int.initSet(al, 0xeeeeeeee22222222); try a.bitAnd(a, b); testing.expect((try a.to(u64)) == 0xeeeeeeee00000000); } test "big.int bitwise and multi-limb" { var a = try Int.initSet(al, maxInt(Limb) + 1); var b = try Int.initSet(al, maxInt(Limb)); try a.bitAnd(a, b); testing.expect((try a.to(u128)) == 0); } test "big.int bitwise xor simple" { var a = try Int.initSet(al, 0xffffffff11111111); var b = try Int.initSet(al, 0xeeeeeeee22222222); try a.bitXor(a, b); testing.expect((try a.to(u64)) == 0x1111111133333333); } test "big.int bitwise xor multi-limb" { var a = try Int.initSet(al, maxInt(Limb) + 1); var b = try Int.initSet(al, maxInt(Limb)); try a.bitXor(a, b); testing.expect((try a.to(DoubleLimb)) == (maxInt(Limb) + 1) ^ maxInt(Limb)); } test "big.int bitwise or simple" { var a = try Int.initSet(al, 0xffffffff11111111); var b = try Int.initSet(al, 0xeeeeeeee22222222); try a.bitOr(a, b); testing.expect((try a.to(u64)) == 0xffffffff33333333); } test "big.int bitwise or multi-limb" { var a = try Int.initSet(al, maxInt(Limb) + 1); var b = try Int.initSet(al, maxInt(Limb)); try a.bitOr(a, b); // TODO: big.int.cpp or is wrong on multi-limb. testing.expect((try a.to(DoubleLimb)) == (maxInt(Limb) + 1) + maxInt(Limb)); } test "big.int var args" { var a = try Int.initSet(al, 5); try a.add(a, try Int.initSet(al, 6)); testing.expect((try a.to(u64)) == 11); testing.expect(a.cmp(try Int.initSet(al, 11)) == 0); testing.expect(a.cmp(try Int.initSet(al, 14)) <= 0); }