const std = @import("../std.zig"); const builtin = @import("builtin"); const root = @import("root"); const assert = std.debug.assert; const testing = std.testing; const mem = std.mem; const AtomicRmwOp = builtin.AtomicRmwOp; const AtomicOrder = builtin.AtomicOrder; const fs = std.event.fs; const os = std.os; const windows = os.windows; const maxInt = std.math.maxInt; const Thread = std.Thread; pub const Loop = struct { allocator: *mem.Allocator, next_tick_queue: std.atomic.Queue(anyframe), os_data: OsData, final_resume_node: ResumeNode, pending_event_count: usize, extra_threads: []*Thread, // pre-allocated eventfds. all permanently active. // this is how we send promises to be resumed on other threads. available_eventfd_resume_nodes: std.atomic.Stack(ResumeNode.EventFd), eventfd_resume_nodes: []std.atomic.Stack(ResumeNode.EventFd).Node, pub const NextTickNode = std.atomic.Queue(anyframe).Node; pub const ResumeNode = struct { id: Id, handle: anyframe, overlapped: Overlapped, pub const overlapped_init = switch (builtin.os) { .windows => windows.OVERLAPPED{ .Internal = 0, .InternalHigh = 0, .Offset = 0, .OffsetHigh = 0, .hEvent = null, }, else => {}, }; pub const Overlapped = @typeOf(overlapped_init); pub const Id = enum { Basic, Stop, EventFd, }; pub const EventFd = switch (builtin.os) { .macosx, .freebsd, .netbsd => KEventFd, .linux => struct { base: ResumeNode, epoll_op: u32, eventfd: i32, }, .windows => struct { base: ResumeNode, completion_key: usize, }, else => @compileError("unsupported OS"), }; const KEventFd = struct { base: ResumeNode, kevent: os.Kevent, }; pub const Basic = switch (builtin.os) { .macosx, .freebsd, .netbsd => KEventBasic, .linux => struct { base: ResumeNode, }, .windows => struct { base: ResumeNode, }, else => @compileError("unsupported OS"), }; const KEventBasic = struct { base: ResumeNode, kev: os.Kevent, }; }; var global_instance_state: Loop = undefined; const default_instance: ?*Loop = switch (std.io.mode) { .blocking => null, .evented => &global_instance_state, }; pub const instance: ?*Loop = if (@hasDecl(root, "event_loop")) root.event_loop else default_instance; /// TODO copy elision / named return values so that the threads referencing *Loop /// have the correct pointer value. /// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765 pub fn init(self: *Loop, allocator: *mem.Allocator) !void { if (builtin.single_threaded) { return self.initSingleThreaded(allocator); } else { return self.initMultiThreaded(allocator); } } /// After initialization, call run(). /// TODO copy elision / named return values so that the threads referencing *Loop /// have the correct pointer value. /// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765 pub fn initSingleThreaded(self: *Loop, allocator: *mem.Allocator) !void { return self.initInternal(allocator, 1); } /// The allocator must be thread-safe because we use it for multiplexing /// async functions onto kernel threads. /// After initialization, call run(). /// TODO copy elision / named return values so that the threads referencing *Loop /// have the correct pointer value. /// https://github.com/ziglang/zig/issues/2761 and https://github.com/ziglang/zig/issues/2765 pub fn initMultiThreaded(self: *Loop, allocator: *mem.Allocator) !void { if (builtin.single_threaded) @compileError("initMultiThreaded unavailable when building in single-threaded mode"); const core_count = try Thread.cpuCount(); return self.initInternal(allocator, core_count); } /// Thread count is the total thread count. The thread pool size will be /// max(thread_count - 1, 0) fn initInternal(self: *Loop, allocator: *mem.Allocator, thread_count: usize) !void { self.* = Loop{ .pending_event_count = 1, .allocator = allocator, .os_data = undefined, .next_tick_queue = std.atomic.Queue(anyframe).init(), .extra_threads = undefined, .available_eventfd_resume_nodes = std.atomic.Stack(ResumeNode.EventFd).init(), .eventfd_resume_nodes = undefined, .final_resume_node = ResumeNode{ .id = ResumeNode.Id.Stop, .handle = undefined, .overlapped = ResumeNode.overlapped_init, }, }; // We need at least one of these in case the fs thread wants to use onNextTick const extra_thread_count = thread_count - 1; const resume_node_count = std.math.max(extra_thread_count, 1); self.eventfd_resume_nodes = try self.allocator.alloc( std.atomic.Stack(ResumeNode.EventFd).Node, resume_node_count, ); errdefer self.allocator.free(self.eventfd_resume_nodes); self.extra_threads = try self.allocator.alloc(*Thread, extra_thread_count); errdefer self.allocator.free(self.extra_threads); try self.initOsData(extra_thread_count); errdefer self.deinitOsData(); } pub fn deinit(self: *Loop) void { self.deinitOsData(); self.allocator.free(self.extra_threads); } const InitOsDataError = os.EpollCreateError || mem.Allocator.Error || os.EventFdError || Thread.SpawnError || os.EpollCtlError || os.KEventError || windows.CreateIoCompletionPortError; const wakeup_bytes = [_]u8{0x1} ** 8; fn initOsData(self: *Loop, extra_thread_count: usize) InitOsDataError!void { switch (builtin.os) { .linux => { self.os_data.fs_queue = std.atomic.Queue(fs.Request).init(); self.os_data.fs_queue_item = 0; // we need another thread for the file system because Linux does not have an async // file system I/O API. self.os_data.fs_end_request = fs.RequestNode{ .prev = undefined, .next = undefined, .data = fs.Request{ .msg = fs.Request.Msg.End, .finish = fs.Request.Finish.NoAction, }, }; errdefer { while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd); } for (self.eventfd_resume_nodes) |*eventfd_node| { eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ .data = ResumeNode.EventFd{ .base = ResumeNode{ .id = .EventFd, .handle = undefined, .overlapped = ResumeNode.overlapped_init, }, .eventfd = try os.eventfd(1, os.EFD_CLOEXEC | os.EFD_NONBLOCK), .epoll_op = os.EPOLL_CTL_ADD, }, .next = undefined, }; self.available_eventfd_resume_nodes.push(eventfd_node); } self.os_data.epollfd = try os.epoll_create1(os.EPOLL_CLOEXEC); errdefer os.close(self.os_data.epollfd); self.os_data.final_eventfd = try os.eventfd(0, os.EFD_CLOEXEC | os.EFD_NONBLOCK); errdefer os.close(self.os_data.final_eventfd); self.os_data.final_eventfd_event = os.epoll_event{ .events = os.EPOLLIN, .data = os.epoll_data{ .ptr = @ptrToInt(&self.final_resume_node) }, }; try os.epoll_ctl( self.os_data.epollfd, os.EPOLL_CTL_ADD, self.os_data.final_eventfd, &self.os_data.final_eventfd_event, ); self.os_data.fs_thread = try Thread.spawn(self, posixFsRun); errdefer { self.posixFsRequest(&self.os_data.fs_end_request); self.os_data.fs_thread.wait(); } if (builtin.single_threaded) { assert(extra_thread_count == 0); return; } var extra_thread_index: usize = 0; errdefer { // writing 8 bytes to an eventfd cannot fail os.write(self.os_data.final_eventfd, wakeup_bytes) catch unreachable; while (extra_thread_index != 0) { extra_thread_index -= 1; self.extra_threads[extra_thread_index].wait(); } } while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { self.extra_threads[extra_thread_index] = try Thread.spawn(self, workerRun); } }, .macosx, .freebsd, .netbsd => { self.os_data.kqfd = try os.kqueue(); errdefer os.close(self.os_data.kqfd); self.os_data.fs_kqfd = try os.kqueue(); errdefer os.close(self.os_data.fs_kqfd); self.os_data.fs_queue = std.atomic.Queue(fs.Request).init(); // we need another thread for the file system because Darwin does not have an async // file system I/O API. self.os_data.fs_end_request = fs.RequestNode{ .prev = undefined, .next = undefined, .data = fs.Request{ .msg = fs.Request.Msg.End, .finish = fs.Request.Finish.NoAction, }, }; const empty_kevs = ([*]os.Kevent)(undefined)[0..0]; for (self.eventfd_resume_nodes) |*eventfd_node, i| { eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ .data = ResumeNode.EventFd{ .base = ResumeNode{ .id = ResumeNode.Id.EventFd, .handle = undefined, .overlapped = ResumeNode.overlapped_init, }, // this one is for sending events .kevent = os.Kevent{ .ident = i, .filter = os.EVFILT_USER, .flags = os.EV_CLEAR | os.EV_ADD | os.EV_DISABLE, .fflags = 0, .data = 0, .udata = @ptrToInt(&eventfd_node.data.base), }, }, .next = undefined, }; self.available_eventfd_resume_nodes.push(eventfd_node); const kevent_array = (*const [1]os.Kevent)(&eventfd_node.data.kevent); _ = try os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null); eventfd_node.data.kevent.flags = os.EV_CLEAR | os.EV_ENABLE; eventfd_node.data.kevent.fflags = os.NOTE_TRIGGER; } // Pre-add so that we cannot get error.SystemResources // later when we try to activate it. self.os_data.final_kevent = os.Kevent{ .ident = extra_thread_count, .filter = os.EVFILT_USER, .flags = os.EV_ADD | os.EV_DISABLE, .fflags = 0, .data = 0, .udata = @ptrToInt(&self.final_resume_node), }; const final_kev_arr = (*const [1]os.Kevent)(&self.os_data.final_kevent); _ = try os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null); self.os_data.final_kevent.flags = os.EV_ENABLE; self.os_data.final_kevent.fflags = os.NOTE_TRIGGER; self.os_data.fs_kevent_wake = os.Kevent{ .ident = 0, .filter = os.EVFILT_USER, .flags = os.EV_ADD | os.EV_ENABLE, .fflags = os.NOTE_TRIGGER, .data = 0, .udata = undefined, }; self.os_data.fs_kevent_wait = os.Kevent{ .ident = 0, .filter = os.EVFILT_USER, .flags = os.EV_ADD | os.EV_CLEAR, .fflags = 0, .data = 0, .udata = undefined, }; self.os_data.fs_thread = try Thread.spawn(self, posixFsRun); errdefer { self.posixFsRequest(&self.os_data.fs_end_request); self.os_data.fs_thread.wait(); } if (builtin.single_threaded) { assert(extra_thread_count == 0); return; } var extra_thread_index: usize = 0; errdefer { _ = os.kevent(self.os_data.kqfd, final_kev_arr, empty_kevs, null) catch unreachable; while (extra_thread_index != 0) { extra_thread_index -= 1; self.extra_threads[extra_thread_index].wait(); } } while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { self.extra_threads[extra_thread_index] = try Thread.spawn(self, workerRun); } }, .windows => { self.os_data.io_port = try windows.CreateIoCompletionPort( windows.INVALID_HANDLE_VALUE, null, undefined, maxInt(windows.DWORD), ); errdefer windows.CloseHandle(self.os_data.io_port); for (self.eventfd_resume_nodes) |*eventfd_node, i| { eventfd_node.* = std.atomic.Stack(ResumeNode.EventFd).Node{ .data = ResumeNode.EventFd{ .base = ResumeNode{ .id = ResumeNode.Id.EventFd, .handle = undefined, .overlapped = ResumeNode.overlapped_init, }, // this one is for sending events .completion_key = @ptrToInt(&eventfd_node.data.base), }, .next = undefined, }; self.available_eventfd_resume_nodes.push(eventfd_node); } if (builtin.single_threaded) { assert(extra_thread_count == 0); return; } var extra_thread_index: usize = 0; errdefer { var i: usize = 0; while (i < extra_thread_index) : (i += 1) { while (true) { const overlapped = &self.final_resume_node.overlapped; windows.PostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue; break; } } while (extra_thread_index != 0) { extra_thread_index -= 1; self.extra_threads[extra_thread_index].wait(); } } while (extra_thread_index < extra_thread_count) : (extra_thread_index += 1) { self.extra_threads[extra_thread_index] = try Thread.spawn(self, workerRun); } }, else => {}, } } fn deinitOsData(self: *Loop) void { switch (builtin.os) { .linux => { os.close(self.os_data.final_eventfd); while (self.available_eventfd_resume_nodes.pop()) |node| os.close(node.data.eventfd); os.close(self.os_data.epollfd); self.allocator.free(self.eventfd_resume_nodes); }, .macosx, .freebsd, .netbsd => { os.close(self.os_data.kqfd); os.close(self.os_data.fs_kqfd); }, .windows => { windows.CloseHandle(self.os_data.io_port); }, else => {}, } } /// resume_node must live longer than the anyframe that it holds a reference to. /// flags must contain EPOLLET pub fn linuxAddFd(self: *Loop, fd: i32, resume_node: *ResumeNode, flags: u32) !void { assert(flags & os.EPOLLET == os.EPOLLET); self.beginOneEvent(); errdefer self.finishOneEvent(); try self.linuxModFd( fd, os.EPOLL_CTL_ADD, flags, resume_node, ); } pub fn linuxModFd(self: *Loop, fd: i32, op: u32, flags: u32, resume_node: *ResumeNode) !void { assert(flags & os.EPOLLET == os.EPOLLET); var ev = os.linux.epoll_event{ .events = flags, .data = os.linux.epoll_data{ .ptr = @ptrToInt(resume_node) }, }; try os.epoll_ctl(self.os_data.epollfd, op, fd, &ev); } pub fn linuxRemoveFd(self: *Loop, fd: i32) void { os.epoll_ctl(self.os_data.epollfd, os.linux.EPOLL_CTL_DEL, fd, null) catch {}; self.finishOneEvent(); } pub fn linuxWaitFd(self: *Loop, fd: i32, flags: u32) !void { defer self.linuxRemoveFd(fd); suspend { var resume_node = ResumeNode.Basic{ .base = ResumeNode{ .id = .Basic, .handle = @frame(), .overlapped = ResumeNode.overlapped_init, }, }; try self.linuxAddFd(fd, &resume_node.base, flags); } } pub fn waitUntilFdReadable(self: *Loop, fd: os.fd_t) !void { return self.linuxWaitFd(fd, os.EPOLLET | os.EPOLLIN); } pub async fn bsdWaitKev(self: *Loop, ident: usize, filter: i16, fflags: u32) !os.Kevent { var resume_node = ResumeNode.Basic{ .base = ResumeNode{ .id = ResumeNode.Id.Basic, .handle = @frame(), .overlapped = ResumeNode.overlapped_init, }, .kev = undefined, }; defer self.bsdRemoveKev(ident, filter); suspend { try self.bsdAddKev(&resume_node, ident, filter, fflags); } return resume_node.kev; } /// resume_node must live longer than the anyframe that it holds a reference to. pub fn bsdAddKev(self: *Loop, resume_node: *ResumeNode.Basic, ident: usize, filter: i16, fflags: u32) !void { self.beginOneEvent(); errdefer self.finishOneEvent(); var kev = os.Kevent{ .ident = ident, .filter = filter, .flags = os.EV_ADD | os.EV_ENABLE | os.EV_CLEAR, .fflags = fflags, .data = 0, .udata = @ptrToInt(&resume_node.base), }; const kevent_array = (*const [1]os.Kevent)(&kev); const empty_kevs = ([*]os.Kevent)(undefined)[0..0]; _ = try os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null); } pub fn bsdRemoveKev(self: *Loop, ident: usize, filter: i16) void { var kev = os.Kevent{ .ident = ident, .filter = filter, .flags = os.EV_DELETE, .fflags = 0, .data = 0, .udata = 0, }; const kevent_array = (*const [1]os.Kevent)(&kev); const empty_kevs = ([*]os.Kevent)(undefined)[0..0]; _ = os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null) catch undefined; self.finishOneEvent(); } fn dispatch(self: *Loop) void { while (self.available_eventfd_resume_nodes.pop()) |resume_stack_node| { const next_tick_node = self.next_tick_queue.get() orelse { self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; const eventfd_node = &resume_stack_node.data; eventfd_node.base.handle = next_tick_node.data; switch (builtin.os) { .macosx, .freebsd, .netbsd => { const kevent_array = (*const [1]os.Kevent)(&eventfd_node.kevent); const empty_kevs = ([*]os.Kevent)(undefined)[0..0]; _ = os.kevent(self.os_data.kqfd, kevent_array, empty_kevs, null) catch { self.next_tick_queue.unget(next_tick_node); self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; }, .linux => { // the pending count is already accounted for const epoll_events = os.EPOLLONESHOT | os.linux.EPOLLIN | os.linux.EPOLLOUT | os.linux.EPOLLET; self.linuxModFd( eventfd_node.eventfd, eventfd_node.epoll_op, epoll_events, &eventfd_node.base, ) catch { self.next_tick_queue.unget(next_tick_node); self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; }, .windows => { windows.PostQueuedCompletionStatus( self.os_data.io_port, undefined, undefined, &eventfd_node.base.overlapped, ) catch { self.next_tick_queue.unget(next_tick_node); self.available_eventfd_resume_nodes.push(resume_stack_node); return; }; }, else => @compileError("unsupported OS"), } } } /// Bring your own linked list node. This means it can't fail. pub fn onNextTick(self: *Loop, node: *NextTickNode) void { self.beginOneEvent(); // finished in dispatch() self.next_tick_queue.put(node); self.dispatch(); } pub fn cancelOnNextTick(self: *Loop, node: *NextTickNode) void { if (self.next_tick_queue.remove(node)) { self.finishOneEvent(); } } pub fn run(self: *Loop) void { self.finishOneEvent(); // the reference we start with self.workerRun(); switch (builtin.os) { .linux, .macosx, .freebsd, .netbsd, => self.os_data.fs_thread.wait(), else => {}, } for (self.extra_threads) |extra_thread| { extra_thread.wait(); } } /// This is equivalent to function call, except it calls `startCpuBoundOperation` first. pub fn call(comptime func: var, args: ...) @typeOf(func).ReturnType { startCpuBoundOperation(); return func(args); } /// Yielding lets the event loop run, starting any unstarted async operations. /// Note that async operations automatically start when a function yields for any other reason, /// for example, when async I/O is performed. This function is intended to be used only when /// CPU bound tasks would be waiting in the event loop but never get started because no async I/O /// is performed. pub fn yield(self: *Loop) void { suspend { var my_tick_node = NextTickNode{ .prev = undefined, .next = undefined, .data = @frame(), }; self.onNextTick(&my_tick_node); } } /// If the build is multi-threaded and there is an event loop, then it calls `yield`. Otherwise, /// does nothing. pub fn startCpuBoundOperation() void { if (builtin.single_threaded) { return; } else if (instance) |event_loop| { event_loop.yield(); } } /// call finishOneEvent when done pub fn beginOneEvent(self: *Loop) void { _ = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Add, 1, AtomicOrder.SeqCst); } pub fn finishOneEvent(self: *Loop) void { const prev = @atomicRmw(usize, &self.pending_event_count, AtomicRmwOp.Sub, 1, AtomicOrder.SeqCst); if (prev == 1) { // cause all the threads to stop switch (builtin.os) { .linux => { self.posixFsRequest(&self.os_data.fs_end_request); // writing 8 bytes to an eventfd cannot fail os.write(self.os_data.final_eventfd, wakeup_bytes) catch unreachable; return; }, .macosx, .freebsd, .netbsd => { self.posixFsRequest(&self.os_data.fs_end_request); const final_kevent = (*const [1]os.Kevent)(&self.os_data.final_kevent); const empty_kevs = ([*]os.Kevent)(undefined)[0..0]; // cannot fail because we already added it and this just enables it _ = os.kevent(self.os_data.kqfd, final_kevent, empty_kevs, null) catch unreachable; return; }, .windows => { var i: usize = 0; while (i < self.extra_threads.len + 1) : (i += 1) { while (true) { const overlapped = &self.final_resume_node.overlapped; windows.PostQueuedCompletionStatus(self.os_data.io_port, undefined, undefined, overlapped) catch continue; break; } } return; }, else => @compileError("unsupported OS"), } } } fn workerRun(self: *Loop) void { while (true) { while (true) { const next_tick_node = self.next_tick_queue.get() orelse break; self.dispatch(); resume next_tick_node.data; self.finishOneEvent(); } switch (builtin.os) { .linux => { // only process 1 event so we don't steal from other threads var events: [1]os.linux.epoll_event = undefined; const count = os.epoll_wait(self.os_data.epollfd, events[0..], -1); for (events[0..count]) |ev| { const resume_node = @intToPtr(*ResumeNode, ev.data.ptr); const handle = resume_node.handle; const resume_node_id = resume_node.id; switch (resume_node_id) { .Basic => {}, .Stop => return, .EventFd => { const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); event_fd_node.epoll_op = os.EPOLL_CTL_MOD; const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); self.available_eventfd_resume_nodes.push(stack_node); }, } resume handle; if (resume_node_id == ResumeNode.Id.EventFd) { self.finishOneEvent(); } } }, .macosx, .freebsd, .netbsd => { var eventlist: [1]os.Kevent = undefined; const empty_kevs = ([*]os.Kevent)(undefined)[0..0]; const count = os.kevent(self.os_data.kqfd, empty_kevs, eventlist[0..], null) catch unreachable; for (eventlist[0..count]) |ev| { const resume_node = @intToPtr(*ResumeNode, ev.udata); const handle = resume_node.handle; const resume_node_id = resume_node.id; switch (resume_node_id) { .Basic => { const basic_node = @fieldParentPtr(ResumeNode.Basic, "base", resume_node); basic_node.kev = ev; }, .Stop => return, .EventFd => { const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); self.available_eventfd_resume_nodes.push(stack_node); }, } resume handle; if (resume_node_id == ResumeNode.Id.EventFd) { self.finishOneEvent(); } } }, .windows => { var completion_key: usize = undefined; const overlapped = while (true) { var nbytes: windows.DWORD = undefined; var overlapped: ?*windows.OVERLAPPED = undefined; switch (windows.GetQueuedCompletionStatus(self.os_data.io_port, &nbytes, &completion_key, &overlapped, windows.INFINITE)) { .Aborted => return, .Normal => {}, .EOF => {}, .Cancelled => continue, } if (overlapped) |o| break o; } else unreachable; // TODO else unreachable should not be necessary const resume_node = @fieldParentPtr(ResumeNode, "overlapped", overlapped); const handle = resume_node.handle; const resume_node_id = resume_node.id; switch (resume_node_id) { .Basic => {}, .Stop => return, .EventFd => { const event_fd_node = @fieldParentPtr(ResumeNode.EventFd, "base", resume_node); const stack_node = @fieldParentPtr(std.atomic.Stack(ResumeNode.EventFd).Node, "data", event_fd_node); self.available_eventfd_resume_nodes.push(stack_node); }, } resume handle; self.finishOneEvent(); }, else => @compileError("unsupported OS"), } } } fn posixFsRequest(self: *Loop, request_node: *fs.RequestNode) void { self.beginOneEvent(); // finished in posixFsRun after processing the msg self.os_data.fs_queue.put(request_node); switch (builtin.os) { .macosx, .freebsd, .netbsd => { const fs_kevs = (*const [1]os.Kevent)(&self.os_data.fs_kevent_wake); const empty_kevs = ([*]os.Kevent)(undefined)[0..0]; _ = os.kevent(self.os_data.fs_kqfd, fs_kevs, empty_kevs, null) catch unreachable; }, .linux => { _ = @atomicRmw(i32, &self.os_data.fs_queue_item, AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst); const rc = os.linux.futex_wake(&self.os_data.fs_queue_item, os.linux.FUTEX_WAKE, 1); switch (os.linux.getErrno(rc)) { 0 => {}, os.EINVAL => unreachable, else => unreachable, } }, else => @compileError("Unsupported OS"), } } fn posixFsCancel(self: *Loop, request_node: *fs.RequestNode) void { if (self.os_data.fs_queue.remove(request_node)) { self.finishOneEvent(); } } fn posixFsRun(self: *Loop) void { while (true) { if (builtin.os == .linux) { _ = @atomicRmw(i32, &self.os_data.fs_queue_item, .Xchg, 0, .SeqCst); } while (self.os_data.fs_queue.get()) |node| { switch (node.data.msg) { .End => return, .WriteV => |*msg| { msg.result = os.writev(msg.fd, msg.iov); }, .PWriteV => |*msg| { msg.result = os.pwritev(msg.fd, msg.iov, msg.offset); }, .PReadV => |*msg| { msg.result = os.preadv(msg.fd, msg.iov, msg.offset); }, .Open => |*msg| { msg.result = os.openC(msg.path.ptr, msg.flags, msg.mode); }, .Close => |*msg| os.close(msg.fd), .WriteFile => |*msg| blk: { const flags = os.O_LARGEFILE | os.O_WRONLY | os.O_CREAT | os.O_CLOEXEC | os.O_TRUNC; const fd = os.openC(msg.path.ptr, flags, msg.mode) catch |err| { msg.result = err; break :blk; }; defer os.close(fd); msg.result = os.write(fd, msg.contents); }, } switch (node.data.finish) { .TickNode => |*tick_node| self.onNextTick(tick_node), .DeallocCloseOperation => |close_op| { self.allocator.destroy(close_op); }, .NoAction => {}, } self.finishOneEvent(); } switch (builtin.os) { .linux => { const rc = os.linux.futex_wait(&self.os_data.fs_queue_item, os.linux.FUTEX_WAIT, 0, null); switch (os.linux.getErrno(rc)) { 0, os.EINTR, os.EAGAIN => continue, else => unreachable, } }, .macosx, .freebsd, .netbsd => { const fs_kevs = (*const [1]os.Kevent)(&self.os_data.fs_kevent_wait); var out_kevs: [1]os.Kevent = undefined; _ = os.kevent(self.os_data.fs_kqfd, fs_kevs, out_kevs[0..], null) catch unreachable; }, else => @compileError("Unsupported OS"), } } } const OsData = switch (builtin.os) { .linux => LinuxOsData, .macosx, .freebsd, .netbsd => KEventData, .windows => struct { io_port: windows.HANDLE, extra_thread_count: usize, }, else => struct {}, }; const KEventData = struct { kqfd: i32, final_kevent: os.Kevent, fs_kevent_wake: os.Kevent, fs_kevent_wait: os.Kevent, fs_thread: *Thread, fs_kqfd: i32, fs_queue: std.atomic.Queue(fs.Request), fs_end_request: fs.RequestNode, }; const LinuxOsData = struct { epollfd: i32, final_eventfd: i32, final_eventfd_event: os.linux.epoll_event, fs_thread: *Thread, fs_queue_item: i32, fs_queue: std.atomic.Queue(fs.Request), fs_end_request: fs.RequestNode, }; }; test "std.event.Loop - basic" { // https://github.com/ziglang/zig/issues/1908 if (builtin.single_threaded) return error.SkipZigTest; const allocator = std.heap.direct_allocator; var loop: Loop = undefined; try loop.initMultiThreaded(allocator); defer loop.deinit(); loop.run(); } test "std.event.Loop - call" { // https://github.com/ziglang/zig/issues/1908 if (builtin.single_threaded) return error.SkipZigTest; const allocator = std.heap.direct_allocator; var loop: Loop = undefined; try loop.initMultiThreaded(allocator); defer loop.deinit(); var did_it = false; var handle = async Loop.call(testEventLoop); var handle2 = async Loop.call(testEventLoop2, &handle, &did_it); loop.run(); testing.expect(did_it); } async fn testEventLoop() i32 { return 1234; } async fn testEventLoop2(h: anyframe->i32, did_it: *bool) void { const value = await h; testing.expect(value == 1234); did_it.* = true; }