// Ported from: // // https://github.com/llvm/llvm-project/blob/2ffb1b0413efa9a24eb3c49e710e36f92e2cb50b/compiler-rt/lib/builtins/fp_mul_impl.inc const std = @import("std"); const builtin = @import("builtin"); const compiler_rt = @import("../compiler_rt.zig"); pub extern fn __multf3(a: f128, b: f128) f128 { return mulXf3(f128, a, b); } pub extern fn __muldf3(a: f64, b: f64) f64 { return mulXf3(f64, a, b); } pub extern fn __mulsf3(a: f32, b: f32) f32 { return mulXf3(f32, a, b); } fn mulXf3(comptime T: type, a: T, b: T) T { @setRuntimeSafety(builtin.is_test); const Z = @IntType(false, T.bit_count); const typeWidth = T.bit_count; const significandBits = std.math.floatMantissaBits(T); const exponentBits = std.math.floatExponentBits(T); const signBit = (Z(1) << (significandBits + exponentBits)); const maxExponent = ((1 << exponentBits) - 1); const exponentBias = (maxExponent >> 1); const implicitBit = (Z(1) << significandBits); const quietBit = implicitBit >> 1; const significandMask = implicitBit - 1; const absMask = signBit - 1; const exponentMask = absMask ^ significandMask; const qnanRep = exponentMask | quietBit; const infRep = @bitCast(Z, std.math.inf(T)); const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent); const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent); const productSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit; var aSignificand: Z = @bitCast(Z, a) & significandMask; var bSignificand: Z = @bitCast(Z, b) & significandMask; var scale: i32 = 0; // Detect if a or b is zero, denormal, infinity, or NaN. if (aExponent -% 1 >= maxExponent -% 1 or bExponent -% 1 >= maxExponent -% 1) { const aAbs: Z = @bitCast(Z, a) & absMask; const bAbs: Z = @bitCast(Z, b) & absMask; // NaN * anything = qNaN if (aAbs > infRep) return @bitCast(T, @bitCast(Z, a) | quietBit); // anything * NaN = qNaN if (bAbs > infRep) return @bitCast(T, @bitCast(Z, b) | quietBit); if (aAbs == infRep) { // infinity * non-zero = +/- infinity if (bAbs != 0) { return @bitCast(T, aAbs | productSign); } else { // infinity * zero = NaN return @bitCast(T, qnanRep); } } if (bAbs == infRep) { //? non-zero * infinity = +/- infinity if (aAbs != 0) { return @bitCast(T, bAbs | productSign); } else { // zero * infinity = NaN return @bitCast(T, qnanRep); } } // zero * anything = +/- zero if (aAbs == 0) return @bitCast(T, productSign); // anything * zero = +/- zero if (bAbs == 0) return @bitCast(T, productSign); // one or both of a or b is denormal, the other (if applicable) is a // normal number. Renormalize one or both of a and b, and set scale to // include the necessary exponent adjustment. if (aAbs < implicitBit) scale +%= normalize(T, &aSignificand); if (bAbs < implicitBit) scale +%= normalize(T, &bSignificand); } // Or in the implicit significand bit. (If we fell through from the // denormal path it was already set by normalize( ), but setting it twice // won't hurt anything.) aSignificand |= implicitBit; bSignificand |= implicitBit; // Get the significand of a*b. Before multiplying the significands, shift // one of them left to left-align it in the field. Thus, the product will // have (exponentBits + 2) integral digits, all but two of which must be // zero. Normalizing this result is just a conditional left-shift by one // and bumping the exponent accordingly. var productHi: Z = undefined; var productLo: Z = undefined; wideMultiply(Z, aSignificand, bSignificand << exponentBits, &productHi, &productLo); var productExponent: i32 = @bitCast(i32, aExponent +% bExponent) -% exponentBias +% scale; // Normalize the significand, adjust exponent if needed. if ((productHi & implicitBit) != 0) { productExponent +%= 1; } else { productHi = (productHi << 1) | (productLo >> (typeWidth - 1)); productLo = productLo << 1; } // If we have overflowed the type, return +/- infinity. if (productExponent >= maxExponent) return @bitCast(T, infRep | productSign); if (productExponent <= 0) { // Result is denormal before rounding // // If the result is so small that it just underflows to zero, return // a zero of the appropriate sign. Mathematically there is no need to // handle this case separately, but we make it a special case to // simplify the shift logic. const shift: u32 = @truncate(u32, Z(1) -% @bitCast(u32, productExponent)); if (shift >= typeWidth) return @bitCast(T, productSign); // Otherwise, shift the significand of the result so that the round // bit is the high bit of productLo. wideRightShiftWithSticky(Z, &productHi, &productLo, shift); } else { // Result is normal before rounding; insert the exponent. productHi &= significandMask; productHi |= Z(@bitCast(u32, productExponent)) << significandBits; } // Insert the sign of the result: productHi |= productSign; // Final rounding. The final result may overflow to infinity, or underflow // to zero, but those are the correct results in those cases. We use the // default IEEE-754 round-to-nearest, ties-to-even rounding mode. if (productLo > signBit) productHi +%= 1; if (productLo == signBit) productHi +%= productHi & 1; return @bitCast(T, productHi); } fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void { @setRuntimeSafety(builtin.is_test); switch (Z) { u32 => { // 32x32 --> 64 bit multiply const product = u64(a) * u64(b); hi.* = @truncate(u32, product >> 32); lo.* = @truncate(u32, product); }, u64 => { const S = struct { fn loWord(x: u64) u64 { return @truncate(u32, x); } fn hiWord(x: u64) u64 { return @truncate(u32, x >> 32); } }; // 64x64 -> 128 wide multiply for platforms that don't have such an operation; // many 64-bit platforms have this operation, but they tend to have hardware // floating-point, so we don't bother with a special case for them here. // Each of the component 32x32 -> 64 products const plolo: u64 = S.loWord(a) * S.loWord(b); const plohi: u64 = S.loWord(a) * S.hiWord(b); const philo: u64 = S.hiWord(a) * S.loWord(b); const phihi: u64 = S.hiWord(a) * S.hiWord(b); // Sum terms that contribute to lo in a way that allows us to get the carry const r0: u64 = S.loWord(plolo); const r1: u64 = S.hiWord(plolo) +% S.loWord(plohi) +% S.loWord(philo); lo.* = r0 +% (r1 << 32); // Sum terms contributing to hi with the carry from lo hi.* = S.hiWord(plohi) +% S.hiWord(philo) +% S.hiWord(r1) +% phihi; }, u128 => { const Word_LoMask = u64(0x00000000ffffffff); const Word_HiMask = u64(0xffffffff00000000); const Word_FullMask = u64(0xffffffffffffffff); const S = struct { fn Word_1(x: u128) u64 { return @truncate(u32, x >> 96); } fn Word_2(x: u128) u64 { return @truncate(u32, x >> 64); } fn Word_3(x: u128) u64 { return @truncate(u32, x >> 32); } fn Word_4(x: u128) u64 { return @truncate(u32, x); } }; // 128x128 -> 256 wide multiply for platforms that don't have such an operation; // many 64-bit platforms have this operation, but they tend to have hardware // floating-point, so we don't bother with a special case for them here. const product11: u64 = S.Word_1(a) * S.Word_1(b); const product12: u64 = S.Word_1(a) * S.Word_2(b); const product13: u64 = S.Word_1(a) * S.Word_3(b); const product14: u64 = S.Word_1(a) * S.Word_4(b); const product21: u64 = S.Word_2(a) * S.Word_1(b); const product22: u64 = S.Word_2(a) * S.Word_2(b); const product23: u64 = S.Word_2(a) * S.Word_3(b); const product24: u64 = S.Word_2(a) * S.Word_4(b); const product31: u64 = S.Word_3(a) * S.Word_1(b); const product32: u64 = S.Word_3(a) * S.Word_2(b); const product33: u64 = S.Word_3(a) * S.Word_3(b); const product34: u64 = S.Word_3(a) * S.Word_4(b); const product41: u64 = S.Word_4(a) * S.Word_1(b); const product42: u64 = S.Word_4(a) * S.Word_2(b); const product43: u64 = S.Word_4(a) * S.Word_3(b); const product44: u64 = S.Word_4(a) * S.Word_4(b); const sum0: u128 = u128(product44); const sum1: u128 = u128(product34) +% u128(product43); const sum2: u128 = u128(product24) +% u128(product33) +% u128(product42); const sum3: u128 = u128(product14) +% u128(product23) +% u128(product32) +% u128(product41); const sum4: u128 = u128(product13) +% u128(product22) +% u128(product31); const sum5: u128 = u128(product12) +% u128(product21); const sum6: u128 = u128(product11); const r0: u128 = (sum0 & Word_FullMask) +% ((sum1 & Word_LoMask) << 32); const r1: u128 = (sum0 >> 64) +% ((sum1 >> 32) & Word_FullMask) +% (sum2 & Word_FullMask) +% ((sum3 << 32) & Word_HiMask); lo.* = r0 +% (r1 << 64); hi.* = (r1 >> 64) +% (sum1 >> 96) +% (sum2 >> 64) +% (sum3 >> 32) +% sum4 +% (sum5 << 32) +% (sum6 << 64); }, else => @compileError("unsupported"), } } fn normalize(comptime T: type, significand: *@IntType(false, T.bit_count)) i32 { @setRuntimeSafety(builtin.is_test); const Z = @IntType(false, T.bit_count); const significandBits = std.math.floatMantissaBits(T); const implicitBit = Z(1) << significandBits; const shift = @clz(Z, significand.*) - @clz(Z, implicitBit); significand.* <<= @intCast(std.math.Log2Int(Z), shift); return 1 - shift; } fn wideRightShiftWithSticky(comptime Z: type, hi: *Z, lo: *Z, count: u32) void { @setRuntimeSafety(builtin.is_test); const typeWidth = Z.bit_count; const S = std.math.Log2Int(Z); if (count < typeWidth) { const sticky = @truncate(u8, lo.* << @intCast(S, typeWidth -% count)); lo.* = (hi.* << @intCast(S, typeWidth -% count)) | (lo.* >> @intCast(S, count)) | sticky; hi.* = hi.* >> @intCast(S, count); } else if (count < 2 * typeWidth) { const sticky = @truncate(u8, hi.* << @intCast(S, 2 * typeWidth -% count) | lo.*); lo.* = hi.* >> @intCast(S, count -% typeWidth) | sticky; hi.* = 0; } else { const sticky = @truncate(u8, hi.* | lo.*); lo.* = sticky; hi.* = 0; } } test "import mulXf3" { _ = @import("mulXf3_test.zig"); }