// This is Zig's multi-target implementation of libc. // When builtin.link_libc is true, we need to export all the functions and // provide an entire C API. // Otherwise, only the functions which LLVM generates calls to need to be generated, // such as memcpy, memset, and some math functions. const std = @import("std"); const builtin = @import("builtin"); const maxInt = std.math.maxInt; const is_wasm = switch (builtin.arch) { .wasm32, .wasm64 => true, else => false, }; const is_msvc = switch (builtin.abi) { .msvc => true, else => false, }; const is_freestanding = switch (builtin.os) { .freestanding => true, else => false, }; comptime { if (is_freestanding and is_wasm and builtin.link_libc) { @export("_start", wasm_start, .Strong); } if (builtin.link_libc) { @export("strcmp", strcmp, .Strong); @export("strncmp", strncmp, .Strong); @export("strerror", strerror, .Strong); @export("strlen", strlen, .Strong); } else if (is_msvc) { @export("_fltused", _fltused, .Strong); } else if (builtin.arch == builtin.Arch.arm and builtin.os == .linux) { @export("__aeabi_read_tp", std.os.linux.getThreadPointer, .Strong); } } extern var _fltused: c_int = 1; extern fn main(argc: c_int, argv: [*][*]u8) c_int; extern fn wasm_start() void { _ = main(0, undefined); } extern fn strcmp(s1: [*]const u8, s2: [*]const u8) c_int { return std.cstr.cmp(s1, s2); } extern fn strlen(s: [*]const u8) usize { return std.mem.len(u8, s); } extern fn strncmp(_l: [*]const u8, _r: [*]const u8, _n: usize) c_int { if (_n == 0) return 0; var l = _l; var r = _r; var n = _n - 1; while (l[0] != 0 and r[0] != 0 and n != 0 and l[0] == r[0]) { l += 1; r += 1; n -= 1; } return c_int(l[0]) - c_int(r[0]); } extern fn strerror(errnum: c_int) [*]const u8 { return c"TODO strerror implementation"; } test "strncmp" { std.testing.expect(strncmp(c"a", c"b", 1) == -1); std.testing.expect(strncmp(c"a", c"c", 1) == -2); std.testing.expect(strncmp(c"b", c"a", 1) == 1); std.testing.expect(strncmp(c"\xff", c"\x02", 1) == 253); } // Avoid dragging in the runtime safety mechanisms into this .o file, // unless we're trying to test this file. pub fn panic(msg: []const u8, error_return_trace: ?*builtin.StackTrace) noreturn { if (builtin.is_test) { @setCold(true); std.debug.panic("{}", msg); } else { unreachable; } } export fn memset(dest: ?[*]u8, c: u8, n: usize) ?[*]u8 { @setRuntimeSafety(false); var index: usize = 0; while (index != n) : (index += 1) dest.?[index] = c; return dest; } export fn memcpy(noalias dest: ?[*]u8, noalias src: ?[*]const u8, n: usize) ?[*]u8 { @setRuntimeSafety(false); var index: usize = 0; while (index != n) : (index += 1) dest.?[index] = src.?[index]; return dest; } export fn memmove(dest: ?[*]u8, src: ?[*]const u8, n: usize) ?[*]u8 { @setRuntimeSafety(false); if (@ptrToInt(dest) < @ptrToInt(src)) { var index: usize = 0; while (index != n) : (index += 1) { dest.?[index] = src.?[index]; } } else { var index = n; while (index != 0) { index -= 1; dest.?[index] = src.?[index]; } } return dest; } export fn memcmp(vl: ?[*]const u8, vr: ?[*]const u8, n: usize) isize { @setRuntimeSafety(false); var index: usize = 0; while (index != n) : (index += 1) { const compare_val = @bitCast(i8, vl.?[index] -% vr.?[index]); if (compare_val != 0) { return compare_val; } } return 0; } test "test_memcmp" { const base_arr = []u8{ 1, 1, 1 }; const arr1 = []u8{ 1, 1, 1 }; const arr2 = []u8{ 1, 0, 1 }; const arr3 = []u8{ 1, 2, 1 }; std.testing.expect(memcmp(base_arr[0..].ptr, arr1[0..].ptr, base_arr.len) == 0); std.testing.expect(memcmp(base_arr[0..].ptr, arr2[0..].ptr, base_arr.len) > 0); std.testing.expect(memcmp(base_arr[0..].ptr, arr3[0..].ptr, base_arr.len) < 0); } export fn bcmp(vl: [*]allowzero const u8, vr: [*]allowzero const u8, n: usize) isize { @setRuntimeSafety(false); var index: usize = 0; while (index != n) : (index += 1) { if (vl[index] != vr[index]) { return 1; } } return 0; } test "test_bcmp" { const base_arr = []u8{ 1, 1, 1 }; const arr1 = []u8{ 1, 1, 1 }; const arr2 = []u8{ 1, 0, 1 }; const arr3 = []u8{ 1, 2, 1 }; std.testing.expect(bcmp(base_arr[0..].ptr, arr1[0..].ptr, base_arr.len) == 0); std.testing.expect(bcmp(base_arr[0..].ptr, arr2[0..].ptr, base_arr.len) != 0); std.testing.expect(bcmp(base_arr[0..].ptr, arr3[0..].ptr, base_arr.len) != 0); } comptime { if (builtin.mode != builtin.Mode.ReleaseFast and builtin.mode != builtin.Mode.ReleaseSmall and builtin.os != builtin.Os.windows) { @export("__stack_chk_fail", __stack_chk_fail, builtin.GlobalLinkage.Strong); } if (builtin.os == builtin.Os.linux) { @export("clone", clone, builtin.GlobalLinkage.Strong); } } extern fn __stack_chk_fail() noreturn { @panic("stack smashing detected"); } // TODO we should be able to put this directly in std/linux/x86_64.zig but // it causes a segfault in release mode. this is a workaround of calling it // across .o file boundaries. fix comptime @ptrCast of nakedcc functions. nakedcc fn clone() void { switch (builtin.arch) { .x86_64 => { asm volatile ( \\ xor %%eax,%%eax \\ mov $56,%%al // SYS_clone \\ mov %%rdi,%%r11 \\ mov %%rdx,%%rdi \\ mov %%r8,%%rdx \\ mov %%r9,%%r8 \\ mov 8(%%rsp),%%r10 \\ mov %%r11,%%r9 \\ and $-16,%%rsi \\ sub $8,%%rsi \\ mov %%rcx,(%%rsi) \\ syscall \\ test %%eax,%%eax \\ jnz 1f \\ xor %%ebp,%%ebp \\ pop %%rdi \\ call *%%r9 \\ mov %%eax,%%edi \\ xor %%eax,%%eax \\ mov $60,%%al // SYS_exit \\ syscall \\ hlt \\1: ret \\ ); }, .aarch64 => { // __clone(func, stack, flags, arg, ptid, tls, ctid) // x0, x1, w2, x3, x4, x5, x6 // syscall(SYS_clone, flags, stack, ptid, tls, ctid) // x8, x0, x1, x2, x3, x4 asm volatile ( \\ // align stack and save func,arg \\ and x1,x1,#-16 \\ stp x0,x3,[x1,#-16]! \\ \\ // syscall \\ uxtw x0,w2 \\ mov x2,x4 \\ mov x3,x5 \\ mov x4,x6 \\ mov x8,#220 // SYS_clone \\ svc #0 \\ \\ cbz x0,1f \\ // parent \\ ret \\ // child \\1: ldp x1,x0,[sp],#16 \\ blr x1 \\ mov x8,#93 // SYS_exit \\ svc #0 ); }, .arm => { asm volatile ( \\ stmfd sp!,{r4,r5,r6,r7} \\ mov r7,#120 \\ mov r6,r3 \\ mov r5,r0 \\ mov r0,r2 \\ and r1,r1,#-16 \\ ldr r2,[sp,#16] \\ ldr r3,[sp,#20] \\ ldr r4,[sp,#24] \\ svc 0 \\ tst r0,r0 \\ beq 1f \\ ldmfd sp!,{r4,r5,r6,r7} \\ bx lr \\ \\1: mov r0,r6 \\ bl 3f \\2: mov r7,#1 \\ svc 0 \\ b 2b \\3: bx r5 ); }, .riscv64 => { // __clone(func, stack, flags, arg, ptid, tls, ctid) // a0, a1, a2, a3, a4, a5, a6 // syscall(SYS_clone, flags, stack, ptid, tls, ctid) // a7 a0, a1, a2, a3, a4 asm volatile ( \\ # Save func and arg to stack \\ addi a1, a1, -16 \\ sd a0, 0(a1) \\ sd a3, 8(a1) \\ \\ # Call SYS_clone \\ mv a0, a2 \\ mv a2, a4 \\ mv a3, a5 \\ mv a4, a6 \\ li a7, 220 # SYS_clone \\ ecall \\ \\ beqz a0, 1f \\ # Parent \\ ret \\ \\ # Child \\1: ld a1, 0(sp) \\ ld a0, 8(sp) \\ jalr a1 \\ \\ # Exit \\ li a7, 93 # SYS_exit \\ ecall ); }, .mipsel => { asm volatile ( \\ # Save function pointer and argument pointer on new thread stack \\ and $5, $5, -8 \\ subu $5, $5, 16 \\ sw $4, 0($5) \\ sw $7, 4($5) \\ # Shuffle (fn,sp,fl,arg,ptid,tls,ctid) to (fl,sp,ptid,tls,ctid) \\ move $4, $6 \\ lw $6, 16($sp) \\ lw $7, 20($sp) \\ lw $9, 24($sp) \\ subu $sp, $sp, 16 \\ sw $9, 16($sp) \\ li $2, 4120 \\ syscall \\ beq $7, $0, 1f \\ nop \\ addu $sp, $sp, 16 \\ jr $ra \\ subu $2, $0, $2 \\1: beq $2, $0, 1f \\ nop \\ addu $sp, $sp, 16 \\ jr $ra \\ nop \\1: lw $25, 0($sp) \\ lw $4, 4($sp) \\ jalr $25 \\ nop \\ move $4, $2 \\ li $2, 4001 \\ syscall ); }, else => @compileError("Implement clone() for this arch."), } } const math = std.math; export fn fmodf(x: f32, y: f32) f32 { return generic_fmod(f32, x, y); } export fn fmod(x: f64, y: f64) f64 { return generic_fmod(f64, x, y); } // TODO add intrinsics for these (and probably the double version too) // and have the math stuff use the intrinsic. same as @mod and @rem export fn floorf(x: f32) f32 { return math.floor(x); } export fn ceilf(x: f32) f32 { return math.ceil(x); } export fn floor(x: f64) f64 { return math.floor(x); } export fn ceil(x: f64) f64 { return math.ceil(x); } export fn fma(a: f64, b: f64, c: f64) f64 { return math.fma(f64, a, b, c); } export fn fmaf(a: f32, b: f32, c: f32) f32 { return math.fma(f32, a, b, c); } export fn sin(a: f64) f64 { return math.sin(a); } export fn sinf(a: f32) f32 { return math.sin(a); } export fn cos(a: f64) f64 { return math.cos(a); } export fn cosf(a: f32) f32 { return math.cos(a); } export fn exp(a: f64) f64 { return math.exp(a); } export fn expf(a: f32) f32 { return math.exp(a); } export fn exp2(a: f64) f64 { return math.exp2(a); } export fn exp2f(a: f32) f32 { return math.exp2(a); } export fn log(a: f64) f64 { return math.ln(a); } export fn logf(a: f32) f32 { return math.ln(a); } export fn log2(a: f64) f64 { return math.log2(a); } export fn log2f(a: f32) f32 { return math.log2(a); } export fn log10(a: f64) f64 { return math.log10(a); } export fn log10f(a: f32) f32 { return math.log10(a); } export fn fabs(a: f64) f64 { return math.fabs(a); } export fn fabsf(a: f32) f32 { return math.fabs(a); } export fn trunc(a: f64) f64 { return math.trunc(a); } export fn truncf(a: f32) f32 { return math.trunc(a); } export fn round(a: f64) f64 { return math.round(a); } export fn roundf(a: f32) f32 { return math.round(a); } fn generic_fmod(comptime T: type, x: T, y: T) T { @setRuntimeSafety(false); const uint = @IntType(false, T.bit_count); const log2uint = math.Log2Int(uint); const digits = if (T == f32) 23 else 52; const exp_bits = if (T == f32) 9 else 12; const bits_minus_1 = T.bit_count - 1; const mask = if (T == f32) 0xff else 0x7ff; var ux = @bitCast(uint, x); var uy = @bitCast(uint, y); var ex = @intCast(i32, (ux >> digits) & mask); var ey = @intCast(i32, (uy >> digits) & mask); const sx = if (T == f32) @intCast(u32, ux & 0x80000000) else @intCast(i32, ux >> bits_minus_1); var i: uint = undefined; if (uy << 1 == 0 or isNan(uint, uy) or ex == mask) return (x * y) / (x * y); if (ux << 1 <= uy << 1) { if (ux << 1 == uy << 1) return 0 * x; return x; } // normalize x and y if (ex == 0) { i = ux << exp_bits; while (i >> bits_minus_1 == 0) : (b: { ex -= 1; i <<= 1; }) {} ux <<= @intCast(log2uint, @bitCast(u32, -ex + 1)); } else { ux &= maxInt(uint) >> exp_bits; ux |= 1 << digits; } if (ey == 0) { i = uy << exp_bits; while (i >> bits_minus_1 == 0) : (b: { ey -= 1; i <<= 1; }) {} uy <<= @intCast(log2uint, @bitCast(u32, -ey + 1)); } else { uy &= maxInt(uint) >> exp_bits; uy |= 1 << digits; } // x mod y while (ex > ey) : (ex -= 1) { i = ux -% uy; if (i >> bits_minus_1 == 0) { if (i == 0) return 0 * x; ux = i; } ux <<= 1; } i = ux -% uy; if (i >> bits_minus_1 == 0) { if (i == 0) return 0 * x; ux = i; } while (ux >> digits == 0) : (b: { ux <<= 1; ex -= 1; }) {} // scale result up if (ex > 0) { ux -%= 1 << digits; ux |= uint(@bitCast(u32, ex)) << digits; } else { ux >>= @intCast(log2uint, @bitCast(u32, -ex + 1)); } if (T == f32) { ux |= sx; } else { ux |= @intCast(uint, sx) << bits_minus_1; } return @bitCast(T, ux); } fn isNan(comptime T: type, bits: T) bool { if (T == u16) { return (bits & 0x7fff) > 0x7c00; } else if (T == u32) { return (bits & 0x7fffffff) > 0x7f800000; } else if (T == u64) { return (bits & (maxInt(u64) >> 1)) > (u64(0x7ff) << 52); } else { unreachable; } } // NOTE: The original code is full of implicit signed -> unsigned assumptions and u32 wraparound // behaviour. Most intermediate i32 values are changed to u32 where appropriate but there are // potentially some edge cases remaining that are not handled in the same way. export fn sqrt(x: f64) f64 { const tiny: f64 = 1.0e-300; const sign: u32 = 0x80000000; const u = @bitCast(u64, x); var ix0 = @intCast(u32, u >> 32); var ix1 = @intCast(u32, u & 0xFFFFFFFF); // sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = nan if (ix0 & 0x7FF00000 == 0x7FF00000) { return x * x + x; } // sqrt(+-0) = +-0 if (x == 0.0) { return x; } // sqrt(-ve) = snan if (ix0 & sign != 0) { return math.snan(f64); } // normalize x var m = @intCast(i32, ix0 >> 20); if (m == 0) { // subnormal while (ix0 == 0) { m -= 21; ix0 |= ix1 >> 11; ix1 <<= 21; } // subnormal var i: u32 = 0; while (ix0 & 0x00100000 == 0) : (i += 1) { ix0 <<= 1; } m -= @intCast(i32, i) - 1; ix0 |= ix1 >> @intCast(u5, 32 - i); ix1 <<= @intCast(u5, i); } // unbias exponent m -= 1023; ix0 = (ix0 & 0x000FFFFF) | 0x00100000; if (m & 1 != 0) { ix0 += ix0 + (ix1 >> 31); ix1 = ix1 +% ix1; } m >>= 1; // sqrt(x) bit by bit ix0 += ix0 + (ix1 >> 31); ix1 = ix1 +% ix1; var q: u32 = 0; var q1: u32 = 0; var s0: u32 = 0; var s1: u32 = 0; var r: u32 = 0x00200000; var t: u32 = undefined; var t1: u32 = undefined; while (r != 0) { t = s0 +% r; if (t <= ix0) { s0 = t + r; ix0 -= t; q += r; } ix0 = ix0 +% ix0 +% (ix1 >> 31); ix1 = ix1 +% ix1; r >>= 1; } r = sign; while (r != 0) { t = s1 +% r; t = s0; if (t < ix0 or (t == ix0 and t1 <= ix1)) { s1 = t1 +% r; if (t1 & sign == sign and s1 & sign == 0) { s0 += 1; } ix0 -= t; if (ix1 < t1) { ix0 -= 1; } ix1 = ix1 -% t1; q1 += r; } ix0 = ix0 +% ix0 +% (ix1 >> 31); ix1 = ix1 +% ix1; r >>= 1; } // rounding direction if (ix0 | ix1 != 0) { var z = 1.0 - tiny; // raise inexact if (z >= 1.0) { z = 1.0 + tiny; if (q1 == 0xFFFFFFFF) { q1 = 0; q += 1; } else if (z > 1.0) { if (q1 == 0xFFFFFFFE) { q += 1; } q1 += 2; } else { q1 += q1 & 1; } } } ix0 = (q >> 1) + 0x3FE00000; ix1 = q1 >> 1; if (q & 1 != 0) { ix1 |= 0x80000000; } // NOTE: musl here appears to rely on signed twos-complement wraparound. +% has the same // behaviour at least. var iix0 = @intCast(i32, ix0); iix0 = iix0 +% (m << 20); const uz = (@intCast(u64, iix0) << 32) | ix1; return @bitCast(f64, uz); } export fn sqrtf(x: f32) f32 { const tiny: f32 = 1.0e-30; const sign: i32 = @bitCast(i32, u32(0x80000000)); var ix: i32 = @bitCast(i32, x); if ((ix & 0x7F800000) == 0x7F800000) { return x * x + x; // sqrt(nan) = nan, sqrt(+inf) = +inf, sqrt(-inf) = snan } // zero if (ix <= 0) { if (ix & ~sign == 0) { return x; // sqrt (+-0) = +-0 } if (ix < 0) { return math.snan(f32); } } // normalize var m = ix >> 23; if (m == 0) { // subnormal var i: i32 = 0; while (ix & 0x00800000 == 0) : (i += 1) { ix <<= 1; } m -= i - 1; } m -= 127; // unbias exponent ix = (ix & 0x007FFFFF) | 0x00800000; if (m & 1 != 0) { // odd m, double x to even ix += ix; } m >>= 1; // m = [m / 2] // sqrt(x) bit by bit ix += ix; var q: i32 = 0; // q = sqrt(x) var s: i32 = 0; var r: i32 = 0x01000000; // r = moving bit right -> left while (r != 0) { const t = s + r; if (t <= ix) { s = t + r; ix -= t; q += r; } ix += ix; r >>= 1; } // floating add to find rounding direction if (ix != 0) { var z = 1.0 - tiny; // inexact if (z >= 1.0) { z = 1.0 + tiny; if (z > 1.0) { q += 2; } else { if (q & 1 != 0) { q += 1; } } } } ix = (q >> 1) + 0x3f000000; ix += m << 23; return @bitCast(f32, ix); }