import "syscall.zig"; import "errno.zig"; import "math.zig"; pub const stdin_fileno = 0; pub const stdout_fileno = 1; pub const stderr_fileno = 2; pub var stdin = InStream { .fd = stdin_fileno, }; pub var stdout = OutStream { .fd = stdout_fileno, .buffer = undefined, .index = 0, .buffered = true, }; pub var stderr = OutStream { .fd = stderr_fileno, .buffer = undefined, .index = 0, .buffered = false, }; /// The function received invalid input at runtime. An Invalid error means a /// bug in the program that called the function. pub error Invalid; /// When an Unexpected error occurs, code that emitted the error likely needs /// a patch to recognize the unexpected case so that it can handle it and emit /// a more specific error. pub error Unexpected; pub error DiskQuota; pub error FileTooBig; pub error SigInterrupt; pub error Io; pub error NoSpaceLeft; pub error BadPerm; pub error PipeFail; pub error BadFd; const buffer_size = 4 * 1024; const max_u64_base10_digits = 20; const max_f64_digits = 65; pub struct OutStream { fd: isize, buffer: [buffer_size]u8, index: isize, buffered: bool, pub fn print_str(os: &OutStream, str: []const u8) -> %isize { var src_bytes_left = str.len; var src_index: @typeof(str.len) = 0; const dest_space_left = os.buffer.len - os.index; while (src_bytes_left > 0) { const copy_amt = min_isize(dest_space_left, src_bytes_left); @memcpy(&os.buffer[os.index], &str[src_index], copy_amt); os.index += copy_amt; if (os.index == os.buffer.len) { %return os.flush(); } src_bytes_left -= copy_amt; } if (!os.buffered) { %return os.flush(); } return str.len; } /// Prints a byte buffer, flushes the buffer, then returns the number of /// bytes printed. The "f" is for "flush". pub fn printf(os: &OutStream, str: []const u8) -> %isize { const byte_count = %return os.print_str(str); %return os.flush(); return byte_count; } pub fn print_u64(os: &OutStream, x: u64) -> %isize { if (os.index + max_u64_base10_digits >= os.buffer.len) { %return os.flush(); } const amt_printed = buf_print_u64(os.buffer[os.index...], x); os.index += amt_printed; if (!os.buffered) { %return os.flush(); } return amt_printed; } pub fn print_i64(os: &OutStream, x: i64) -> %isize { if (os.index + max_u64_base10_digits >= os.buffer.len) { %return os.flush(); } const amt_printed = buf_print_i64(os.buffer[os.index...], x); os.index += amt_printed; if (!os.buffered) { %return os.flush(); } return amt_printed; } pub fn print_f64(os: &OutStream, x: f64) -> %isize { if (os.index + max_f64_digits >= os.buffer.len) { %return os.flush(); } const amt_printed = buf_print_f64(os.buffer[os.index...], x, 4); os.index += amt_printed; if (!os.buffered) { %return os.flush(); } return amt_printed; } pub fn flush(os: &OutStream) -> %void { const amt_written = write(os.fd, os.buffer.ptr, os.index); os.index = 0; if (amt_written < 0) { return switch (-amt_written) { EINVAL => unreachable{}, EDQUOT => error.DiskQuota, EFBIG => error.FileTooBig, EINTR => error.SigInterrupt, EIO => error.Io, ENOSPC => error.NoSpaceLeft, EPERM => error.BadPerm, EPIPE => error.PipeFail, else => error.Unexpected, } } } } pub struct InStream { fd: isize, pub fn read(is: &InStream, buf: []u8) -> %isize { const amt_read = read(is.fd, buf.ptr, buf.len); if (amt_read < 0) { return switch (-amt_read) { EINVAL => unreachable{}, EFAULT => unreachable{}, EBADF => error.BadFd, EINTR => error.SigInterrupt, EIO => error.Io, else => error.Unexpected, } } return amt_read; } } pub fn os_get_random_bytes(buf: []u8) -> %void { const amt_got = getrandom(buf.ptr, buf.len, 0); if (amt_got < 0) { return switch (-amt_got) { EINVAL => unreachable{}, EFAULT => unreachable{}, EINTR => error.SigInterrupt, else => error.Unexpected, } } } pub error InvalidChar; pub error Overflow; pub fn parse_u64(buf: []u8, radix: u8) -> %u64 { var x : u64 = 0; for (c, buf) { const digit = char_to_digit(c); if (digit > radix) { return error.InvalidChar; } // x *= radix if (@mul_with_overflow(u64, x, radix, &x)) { return error.Overflow; } // x += digit if (@add_with_overflow(u64, x, digit, &x)) { return error.Overflow; } } return x; } fn char_to_digit(c: u8) -> u8 { // TODO use switch with range if ('0' <= c && c <= '9') { c - '0' } else if ('A' <= c && c <= 'Z') { c - 'A' + 10 } else if ('a' <= c && c <= 'z') { c - 'a' + 10 } else { @max_value(u8) } } pub fn buf_print_i64(out_buf: []u8, x: i64) -> isize { if (x < 0) { out_buf[0] = '-'; return 1 + buf_print_u64(out_buf[1...], u64(-(x + 1)) + 1); } else { return buf_print_u64(out_buf, u64(x)); } } pub fn buf_print_u64(out_buf: []u8, x: u64) -> isize { var buf: [max_u64_base10_digits]u8 = undefined; var a = x; var index = buf.len; while (true) { const digit = a % 10; index -= 1; buf[index] = '0' + u8(digit); a /= 10; if (a == 0) break; } const len = buf.len - index; @memcpy(&out_buf[0], &buf[index], len); return len; } pub fn buf_print_f64(out_buf: []u8, x: f64, decimals: isize) -> isize { const numExpBits = 11; const numRawSigBits = 52; // not including implicit 1 bit const expBias = 1023; var decs = decimals; if (decs >= max_u64_base10_digits) { decs = max_u64_base10_digits - 1; } if (x == f64_get_pos_inf()) { const buf2 = "+Inf"; @memcpy(&out_buf[0], &buf2[0], buf2.len); return 4; } else if (x == f64_get_neg_inf()) { const buf2 = "-Inf"; @memcpy(&out_buf[0], &buf2[0], buf2.len); return 4; } else if (f64_is_nan(x)) { const buf2 = "NaN"; @memcpy(&out_buf[0], &buf2[0], buf2.len); return 3; } var buf: [max_f64_digits]u8 = undefined; var len: isize = 0; // 1 sign bit // 11 exponent bits // 52 significand bits (+ 1 implicit always non-zero bit) const bits = f64_to_bits(x); if (bits & (1 << 63) != 0) { buf[0] = '-'; len += 1; } const rexponent: i64 = i64((bits >> numRawSigBits) & ((1 << numExpBits) - 1)); const exponent = rexponent - expBias - numRawSigBits; if (rexponent == 0) { buf[len] = '0'; len += 1; @memcpy(&out_buf[0], &buf[0], len); return len; } const sig = (bits & ((1 << numRawSigBits) - 1)) | (1 << numRawSigBits); if (exponent >= 0) { // number is an integer if (exponent >= 64 - 53) { // use XeX form // TODO support printing large floats //len += buf_print_u64(buf[len...], sig << 10); const str = "LARGEF64"; @memcpy(&buf[len], &str[0], str.len); len += str.len; } else { // use typical form len += buf_print_u64(buf[len...], sig << u64(exponent)); buf[len] = '.'; len += 1; var i: isize = 0; while (i < decs) { buf[len] = '0'; len += 1; i += 1; } } } else { // number is not an integer // print out whole part len += buf_print_u64(buf[len...], sig >> u64(-exponent)); buf[len] = '.'; len += 1; // print out fractional part // dec_num holds: fractional part * 10 ^ decs var dec_num: u64 = 0; var a: isize = 1; var i: isize = 0; while (i < decs + 5) { a *= 10; i += 1; } // create a mask: 1's for the fractional part, 0's for whole part var masked_sig = sig & ((1 << u64(-exponent)) - 1); i = -1; while (i >= exponent) { var bit_set = ((1 << u64(i-exponent)) & masked_sig) != 0; if (bit_set) { dec_num += usize(a) >> usize(-i); } i -= 1; } dec_num /= 100000; len += decs; i = len - 1; while (i >= len - decs) { buf[i] = '0' + u8(dec_num % 10); dec_num /= 10; i -= 1; } } @memcpy(&out_buf[0], &buf[0], len); len } fn min_isize(x: isize, y: isize) -> isize { if (x < y) x else y }