const builtin = @import("builtin"); const AtomicOrder = builtin.AtomicOrder; const AtomicRmwOp = builtin.AtomicRmwOp; /// Many reader, many writer, non-allocating, thread-safe, lock-free pub fn Queue(comptime T: type) type { return struct { head: &Node, tail: &Node, root: Node, pub const Self = this; pub const Node = struct { next: ?&Node, data: T, }; // TODO: well defined copy elision: https://github.com/zig-lang/zig/issues/287 pub fn init(self: &Self) void { self.root.next = null; self.head = &self.root; self.tail = &self.root; } pub fn put(self: &Self, node: &Node) void { node.next = null; const tail = @atomicRmw(&Node, &self.tail, AtomicRmwOp.Xchg, node, AtomicOrder.SeqCst); _ = @atomicRmw(?&Node, &tail.next, AtomicRmwOp.Xchg, node, AtomicOrder.SeqCst); } pub fn get(self: &Self) ?&Node { var head = @atomicLoad(&Node, &self.head, AtomicOrder.SeqCst); while (true) { const node = head.next ?? return null; head = @cmpxchgWeak(&Node, &self.head, head, node, AtomicOrder.SeqCst, AtomicOrder.SeqCst) ?? return node; } } }; } const std = @import("std"); const Context = struct { allocator: &std.mem.Allocator, queue: &Queue(i32), put_sum: isize, get_sum: isize, get_count: usize, puts_done: u8, // TODO make this a bool }; // TODO add lazy evaluated build options and then put puts_per_thread behind // some option such as: "AggressiveMultithreadedFuzzTest". In the AppVeyor // CI we would use a less aggressive setting since at 1 core, while we still // want this test to pass, we need a smaller value since there is so much thrashing // we would also use a less aggressive setting when running in valgrind const puts_per_thread = 500; const put_thread_count = 3; test "std.atomic.queue" { var direct_allocator = std.heap.DirectAllocator.init(); defer direct_allocator.deinit(); var plenty_of_memory = try direct_allocator.allocator.alloc(u8, 300 * 1024); defer direct_allocator.allocator.free(plenty_of_memory); var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory); var a = &fixed_buffer_allocator.allocator; var queue: Queue(i32) = undefined; queue.init(); var context = Context{ .allocator = a, .queue = &queue, .put_sum = 0, .get_sum = 0, .puts_done = 0, .get_count = 0, }; var putters: [put_thread_count]&std.os.Thread = undefined; for (putters) |*t| { t.* = try std.os.spawnThread(&context, startPuts); } var getters: [put_thread_count]&std.os.Thread = undefined; for (getters) |*t| { t.* = try std.os.spawnThread(&context, startGets); } for (putters) |t| t.wait(); _ = @atomicRmw(u8, &context.puts_done, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst); for (getters) |t| t.wait(); std.debug.assert(context.put_sum == context.get_sum); std.debug.assert(context.get_count == puts_per_thread * put_thread_count); } fn startPuts(ctx: &Context) u8 { var put_count: usize = puts_per_thread; var r = std.rand.DefaultPrng.init(0xdeadbeef); while (put_count != 0) : (put_count -= 1) { std.os.time.sleep(0, 1); // let the os scheduler be our fuzz const x = @bitCast(i32, r.random.scalar(u32)); const node = ctx.allocator.create(Queue(i32).Node) catch unreachable; node.data = x; ctx.queue.put(node); _ = @atomicRmw(isize, &ctx.put_sum, builtin.AtomicRmwOp.Add, x, AtomicOrder.SeqCst); } return 0; } fn startGets(ctx: &Context) u8 { while (true) { while (ctx.queue.get()) |node| { std.os.time.sleep(0, 1); // let the os scheduler be our fuzz _ = @atomicRmw(isize, &ctx.get_sum, builtin.AtomicRmwOp.Add, node.data, builtin.AtomicOrder.SeqCst); _ = @atomicRmw(usize, &ctx.get_count, builtin.AtomicRmwOp.Add, 1, builtin.AtomicOrder.SeqCst); } if (@atomicLoad(u8, &ctx.puts_done, builtin.AtomicOrder.SeqCst) == 1) { break; } } return 0; }