const assert = std.debug.assert; const builtin = @import("builtin"); const AtomicOrder = builtin.AtomicOrder; const expect = std.testing.expect; /// Many reader, many writer, non-allocating, thread-safe /// Uses a spinlock to protect push() and pop() /// When building in single threaded mode, this is a simple linked list. pub fn Stack(comptime T: type) type { return struct { root: ?*Node, lock: @typeOf(lock_init), const lock_init = if (builtin.single_threaded) {} else u8(0); pub const Self = @This(); pub const Node = struct { next: ?*Node, data: T, }; pub fn init() Self { return Self{ .root = null, .lock = lock_init, }; } /// push operation, but only if you are the first item in the stack. if you did not succeed in /// being the first item in the stack, returns the other item that was there. pub fn pushFirst(self: *Self, node: *Node) ?*Node { node.next = null; return @cmpxchgStrong(?*Node, &self.root, null, node, AtomicOrder.SeqCst, AtomicOrder.SeqCst); } pub fn push(self: *Self, node: *Node) void { if (builtin.single_threaded) { node.next = self.root; self.root = node; } else { while (@atomicRmw(u8, &self.lock, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst) != 0) {} defer assert(@atomicRmw(u8, &self.lock, builtin.AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst) == 1); node.next = self.root; self.root = node; } } pub fn pop(self: *Self) ?*Node { if (builtin.single_threaded) { const root = self.root orelse return null; self.root = root.next; return root; } else { while (@atomicRmw(u8, &self.lock, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst) != 0) {} defer assert(@atomicRmw(u8, &self.lock, builtin.AtomicRmwOp.Xchg, 0, AtomicOrder.SeqCst) == 1); const root = self.root orelse return null; self.root = root.next; return root; } } pub fn isEmpty(self: *Self) bool { return @atomicLoad(?*Node, &self.root, AtomicOrder.SeqCst) == null; } }; } const std = @import("../std.zig"); const Context = struct { allocator: *std.mem.Allocator, stack: *Stack(i32), put_sum: isize, get_sum: isize, get_count: usize, puts_done: u8, // TODO make this a bool }; // TODO add lazy evaluated build options and then put puts_per_thread behind // some option such as: "AggressiveMultithreadedFuzzTest". In the AppVeyor // CI we would use a less aggressive setting since at 1 core, while we still // want this test to pass, we need a smaller value since there is so much thrashing // we would also use a less aggressive setting when running in valgrind const puts_per_thread = 500; const put_thread_count = 3; test "std.atomic.stack" { var plenty_of_memory = try std.heap.direct_allocator.alloc(u8, 300 * 1024); defer std.heap.direct_allocator.free(plenty_of_memory); var fixed_buffer_allocator = std.heap.ThreadSafeFixedBufferAllocator.init(plenty_of_memory); var a = &fixed_buffer_allocator.allocator; var stack = Stack(i32).init(); var context = Context{ .allocator = a, .stack = &stack, .put_sum = 0, .get_sum = 0, .puts_done = 0, .get_count = 0, }; if (builtin.single_threaded) { { var i: usize = 0; while (i < put_thread_count) : (i += 1) { expect(startPuts(&context) == 0); } } context.puts_done = 1; { var i: usize = 0; while (i < put_thread_count) : (i += 1) { expect(startGets(&context) == 0); } } } else { var putters: [put_thread_count]*std.Thread = undefined; for (putters) |*t| { t.* = try std.Thread.spawn(&context, startPuts); } var getters: [put_thread_count]*std.Thread = undefined; for (getters) |*t| { t.* = try std.Thread.spawn(&context, startGets); } for (putters) |t| t.wait(); _ = @atomicRmw(u8, &context.puts_done, builtin.AtomicRmwOp.Xchg, 1, AtomicOrder.SeqCst); for (getters) |t| t.wait(); } if (context.put_sum != context.get_sum) { std.debug.panic("failure\nput_sum:{} != get_sum:{}", context.put_sum, context.get_sum); } if (context.get_count != puts_per_thread * put_thread_count) { std.debug.panic( "failure\nget_count:{} != puts_per_thread:{} * put_thread_count:{}", context.get_count, u32(puts_per_thread), u32(put_thread_count), ); } } fn startPuts(ctx: *Context) u8 { var put_count: usize = puts_per_thread; var r = std.rand.DefaultPrng.init(0xdeadbeef); while (put_count != 0) : (put_count -= 1) { std.time.sleep(1); // let the os scheduler be our fuzz const x = @bitCast(i32, r.random.scalar(u32)); const node = ctx.allocator.create(Stack(i32).Node) catch unreachable; node.* = Stack(i32).Node{ .next = undefined, .data = x, }; ctx.stack.push(node); _ = @atomicRmw(isize, &ctx.put_sum, builtin.AtomicRmwOp.Add, x, AtomicOrder.SeqCst); } return 0; } fn startGets(ctx: *Context) u8 { while (true) { const last = @atomicLoad(u8, &ctx.puts_done, builtin.AtomicOrder.SeqCst) == 1; while (ctx.stack.pop()) |node| { std.time.sleep(1); // let the os scheduler be our fuzz _ = @atomicRmw(isize, &ctx.get_sum, builtin.AtomicRmwOp.Add, node.data, builtin.AtomicOrder.SeqCst); _ = @atomicRmw(usize, &ctx.get_count, builtin.AtomicRmwOp.Add, 1, builtin.AtomicOrder.SeqCst); } if (last) return 0; } }