const std = @import("std"); const testing = std.testing; pub fn readULEB128(comptime T: type, in_stream: var) !T { const ShiftT = @IntType(false, std.math.log2(T.bit_count)); var result: T = 0; var shift: usize = 0; while (true) { const byte = try in_stream.readByte(); if (shift > T.bit_count) return error.Overflow; var operand: T = undefined; if (@shlWithOverflow(T, byte & 0x7f, @intCast(ShiftT, shift), &operand)) return error.Overflow; result |= operand; if ((byte & 0x80) == 0) return result; shift += 7; } } pub fn readULEB128Mem(comptime T: type, ptr: *[*]const u8) !T { const ShiftT = @IntType(false, std.math.log2(T.bit_count)); var result: T = 0; var shift: usize = 0; var i: usize = 0; while (true) : (i += 1) { const byte = ptr.*[i]; if (shift > T.bit_count) return error.Overflow; var operand: T = undefined; if (@shlWithOverflow(T, byte & 0x7f, @intCast(ShiftT, shift), &operand)) return error.Overflow; result |= operand; if ((byte & 0x80) == 0) { ptr.* += i + 1; return result; } shift += 7; } } pub fn readILEB128(comptime T: type, in_stream: var) !T { const UT = @IntType(false, T.bit_count); const ShiftT = @IntType(false, std.math.log2(T.bit_count)); var result: UT = 0; var shift: usize = 0; while (true) { const byte = u8(try in_stream.readByte()); if (shift > T.bit_count) return error.Overflow; var operand: UT = undefined; if (@shlWithOverflow(UT, UT(byte & 0x7f), @intCast(ShiftT, shift), &operand)) { if (byte != 0x7f) return error.Overflow; } result |= operand; shift += 7; if ((byte & 0x80) == 0) { if (shift < T.bit_count and (byte & 0x40) != 0) { result |= @bitCast(UT, @intCast(T, -1)) << @intCast(ShiftT, shift); } return @bitCast(T, result); } } } pub fn readILEB128Mem(comptime T: type, ptr: *[*]const u8) !T { const UT = @IntType(false, T.bit_count); const ShiftT = @IntType(false, std.math.log2(T.bit_count)); var result: UT = 0; var shift: usize = 0; var i: usize = 0; while (true) : (i += 1) { const byte = ptr.*[i]; if (shift > T.bit_count) return error.Overflow; var operand: UT = undefined; if (@shlWithOverflow(UT, UT(byte & 0x7f), @intCast(ShiftT, shift), &operand)) { if (byte != 0x7f) return error.Overflow; } result |= operand; shift += 7; if ((byte & 0x80) == 0) { if (shift < T.bit_count and (byte & 0x40) != 0) { result |= @bitCast(UT, @intCast(T, -1)) << @intCast(ShiftT, shift); } ptr.* += i + 1; return @bitCast(T, result); } } } fn test_read_stream_ileb128(comptime T: type, encoded: []const u8) !T { var in_stream = std.io.SliceInStream.init(encoded); return try readILEB128(T, &in_stream.stream); } fn test_read_stream_uleb128(comptime T: type, encoded: []const u8) !T { var in_stream = std.io.SliceInStream.init(encoded); return try readULEB128(T, &in_stream.stream); } fn test_read_ileb128(comptime T: type, encoded: []const u8) !T { var in_stream = std.io.SliceInStream.init(encoded); const v1 = readILEB128(T, &in_stream.stream); var in_ptr = encoded.ptr; const v2 = readILEB128Mem(T, &in_ptr); testing.expectEqual(v1, v2); return v1; } fn test_read_uleb128(comptime T: type, encoded: []const u8) !T { var in_stream = std.io.SliceInStream.init(encoded); const v1 = readULEB128(T, &in_stream.stream); var in_ptr = encoded.ptr; const v2 = readULEB128Mem(T, &in_ptr); testing.expectEqual(v1, v2); return v1; } fn test_read_ileb128_seq(comptime T: type, comptime N: usize, encoded: []const u8) void { var in_stream = std.io.SliceInStream.init(encoded); var in_ptr = encoded.ptr; var i: usize = 0; while (i < N) : (i += 1) { const v1 = readILEB128(T, &in_stream.stream); const v2 = readILEB128Mem(T, &in_ptr); testing.expectEqual(v1, v2); } } fn test_read_uleb128_seq(comptime T: type, comptime N: usize, encoded: []const u8) void { var in_stream = std.io.SliceInStream.init(encoded); var in_ptr = encoded.ptr; var i: usize = 0; while (i < N) : (i += 1) { const v1 = readULEB128(T, &in_stream.stream); const v2 = readULEB128Mem(T, &in_ptr); testing.expectEqual(v1, v2); } } test "deserialize signed LEB128" { // Truncated testing.expectError(error.EndOfStream, test_read_stream_ileb128(i64, "\x80")); // Overflow testing.expectError(error.Overflow, test_read_ileb128(i8, "\x80\x80\x40")); testing.expectError(error.Overflow, test_read_ileb128(i16, "\x80\x80\x80\x40")); testing.expectError(error.Overflow, test_read_ileb128(i32, "\x80\x80\x80\x80\x40")); testing.expectError(error.Overflow, test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x40")); testing.expectError(error.Overflow, test_read_ileb128(i8, "\xff\x7e")); // Decode SLEB128 testing.expect((try test_read_ileb128(i64, "\x00")) == 0); testing.expect((try test_read_ileb128(i64, "\x01")) == 1); testing.expect((try test_read_ileb128(i64, "\x3f")) == 63); testing.expect((try test_read_ileb128(i64, "\x40")) == -64); testing.expect((try test_read_ileb128(i64, "\x41")) == -63); testing.expect((try test_read_ileb128(i64, "\x7f")) == -1); testing.expect((try test_read_ileb128(i64, "\x80\x01")) == 128); testing.expect((try test_read_ileb128(i64, "\x81\x01")) == 129); testing.expect((try test_read_ileb128(i64, "\xff\x7e")) == -129); testing.expect((try test_read_ileb128(i64, "\x80\x7f")) == -128); testing.expect((try test_read_ileb128(i64, "\x81\x7f")) == -127); testing.expect((try test_read_ileb128(i64, "\xc0\x00")) == 64); testing.expect((try test_read_ileb128(i64, "\xc7\x9f\x7f")) == -12345); testing.expect((try test_read_ileb128(i8, "\xff\x7f")) == -1); testing.expect((try test_read_ileb128(i16, "\xff\xff\x7f")) == -1); testing.expect((try test_read_ileb128(i32, "\xff\xff\xff\xff\x7f")) == -1); testing.expect((try test_read_ileb128(i32, "\x80\x80\x80\x80\x08")) == -0x80000000); testing.expect((try test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x01")) == @bitCast(i64, @intCast(u64, 0x8000000000000000))); testing.expect((try test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x40")) == -0x4000000000000000); testing.expect((try test_read_ileb128(i64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x7f")) == -0x8000000000000000); // Decode unnormalized SLEB128 with extra padding bytes. testing.expect((try test_read_ileb128(i64, "\x80\x00")) == 0); testing.expect((try test_read_ileb128(i64, "\x80\x80\x00")) == 0); testing.expect((try test_read_ileb128(i64, "\xff\x00")) == 0x7f); testing.expect((try test_read_ileb128(i64, "\xff\x80\x00")) == 0x7f); testing.expect((try test_read_ileb128(i64, "\x80\x81\x00")) == 0x80); testing.expect((try test_read_ileb128(i64, "\x80\x81\x80\x00")) == 0x80); // Decode sequence of SLEB128 values test_read_ileb128_seq(i64, 4, "\x81\x01\x3f\x80\x7f\x80\x80\x80\x00"); } test "deserialize unsigned LEB128" { // Truncated testing.expectError(error.EndOfStream, test_read_stream_uleb128(u64, "\x80")); // Overflow testing.expectError(error.Overflow, test_read_uleb128(u8, "\x80\x02")); testing.expectError(error.Overflow, test_read_uleb128(u8, "\x80\x80\x40")); testing.expectError(error.Overflow, test_read_uleb128(u16, "\x80\x80\x84")); testing.expectError(error.Overflow, test_read_uleb128(u16, "\x80\x80\x80\x40")); testing.expectError(error.Overflow, test_read_uleb128(u32, "\x80\x80\x80\x80\x90")); testing.expectError(error.Overflow, test_read_uleb128(u32, "\x80\x80\x80\x80\x40")); testing.expectError(error.Overflow, test_read_uleb128(u64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x40")); // Decode ULEB128 testing.expect((try test_read_uleb128(u64, "\x00")) == 0); testing.expect((try test_read_uleb128(u64, "\x01")) == 1); testing.expect((try test_read_uleb128(u64, "\x3f")) == 63); testing.expect((try test_read_uleb128(u64, "\x40")) == 64); testing.expect((try test_read_uleb128(u64, "\x7f")) == 0x7f); testing.expect((try test_read_uleb128(u64, "\x80\x01")) == 0x80); testing.expect((try test_read_uleb128(u64, "\x81\x01")) == 0x81); testing.expect((try test_read_uleb128(u64, "\x90\x01")) == 0x90); testing.expect((try test_read_uleb128(u64, "\xff\x01")) == 0xff); testing.expect((try test_read_uleb128(u64, "\x80\x02")) == 0x100); testing.expect((try test_read_uleb128(u64, "\x81\x02")) == 0x101); testing.expect((try test_read_uleb128(u64, "\x80\xc1\x80\x80\x10")) == 4294975616); testing.expect((try test_read_uleb128(u64, "\x80\x80\x80\x80\x80\x80\x80\x80\x80\x01")) == 0x8000000000000000); // Decode ULEB128 with extra padding bytes testing.expect((try test_read_uleb128(u64, "\x80\x00")) == 0); testing.expect((try test_read_uleb128(u64, "\x80\x80\x00")) == 0); testing.expect((try test_read_uleb128(u64, "\xff\x00")) == 0x7f); testing.expect((try test_read_uleb128(u64, "\xff\x80\x00")) == 0x7f); testing.expect((try test_read_uleb128(u64, "\x80\x81\x00")) == 0x80); testing.expect((try test_read_uleb128(u64, "\x80\x81\x80\x00")) == 0x80); // Decode sequence of ULEB128 values test_read_uleb128_seq(u64, 4, "\x81\x01\x3f\x80\x7f\x80\x80\x80\x00"); }