// Ported from: // // https://github.com/llvm/llvm-project/commit/d674d96bc56c0f377879d01c9d8dfdaaa7859cdb/compiler-rt/lib/builtins/divdf3.c const std = @import("std"); const builtin = @import("builtin"); pub extern fn __divdf3(a: f64, b: f64) f64 { @setRuntimeSafety(builtin.is_test); const Z = @IntType(false, f64.bit_count); const SignedZ = @IntType(true, f64.bit_count); const typeWidth = f64.bit_count; const significandBits = std.math.floatMantissaBits(f64); const exponentBits = std.math.floatExponentBits(f64); const signBit = (Z(1) << (significandBits + exponentBits)); const maxExponent = ((1 << exponentBits) - 1); const exponentBias = (maxExponent >> 1); const implicitBit = (Z(1) << significandBits); const quietBit = implicitBit >> 1; const significandMask = implicitBit - 1; const absMask = signBit - 1; const exponentMask = absMask ^ significandMask; const qnanRep = exponentMask | quietBit; const infRep = @bitCast(Z, std.math.inf(f64)); const aExponent = @truncate(u32, (@bitCast(Z, a) >> significandBits) & maxExponent); const bExponent = @truncate(u32, (@bitCast(Z, b) >> significandBits) & maxExponent); const quotientSign: Z = (@bitCast(Z, a) ^ @bitCast(Z, b)) & signBit; var aSignificand: Z = @bitCast(Z, a) & significandMask; var bSignificand: Z = @bitCast(Z, b) & significandMask; var scale: i32 = 0; // Detect if a or b is zero, denormal, infinity, or NaN. if (aExponent -% 1 >= maxExponent -% 1 or bExponent -% 1 >= maxExponent -% 1) { const aAbs: Z = @bitCast(Z, a) & absMask; const bAbs: Z = @bitCast(Z, b) & absMask; // NaN / anything = qNaN if (aAbs > infRep) return @bitCast(f64, @bitCast(Z, a) | quietBit); // anything / NaN = qNaN if (bAbs > infRep) return @bitCast(f64, @bitCast(Z, b) | quietBit); if (aAbs == infRep) { // infinity / infinity = NaN if (bAbs == infRep) { return @bitCast(f64, qnanRep); } // infinity / anything else = +/- infinity else { return @bitCast(f64, aAbs | quotientSign); } } // anything else / infinity = +/- 0 if (bAbs == infRep) return @bitCast(f64, quotientSign); if (aAbs == 0) { // zero / zero = NaN if (bAbs == 0) { return @bitCast(f64, qnanRep); } // zero / anything else = +/- zero else { return @bitCast(f64, quotientSign); } } // anything else / zero = +/- infinity if (bAbs == 0) return @bitCast(f64, infRep | quotientSign); // one or both of a or b is denormal, the other (if applicable) is a // normal number. Renormalize one or both of a and b, and set scale to // include the necessary exponent adjustment. if (aAbs < implicitBit) scale +%= normalize(f64, &aSignificand); if (bAbs < implicitBit) scale -%= normalize(f64, &bSignificand); } // Or in the implicit significand bit. (If we fell through from the // denormal path it was already set by normalize( ), but setting it twice // won't hurt anything.) aSignificand |= implicitBit; bSignificand |= implicitBit; var quotientExponent: i32 = @bitCast(i32, aExponent -% bExponent) +% scale; // Align the significand of b as a Q31 fixed-point number in the range // [1, 2.0) and get a Q32 approximate reciprocal using a small minimax // polynomial approximation: reciprocal = 3/4 + 1/sqrt(2) - b/2. This // is accurate to about 3.5 binary digits. const q31b: u32 = @truncate(u32, bSignificand >> 21); var recip32 = u32(0x7504f333) -% q31b; // Now refine the reciprocal estimate using a Newton-Raphson iteration: // // x1 = x0 * (2 - x0 * b) // // This doubles the number of correct binary digits in the approximation // with each iteration, so after three iterations, we have about 28 binary // digits of accuracy. var correction32: u32 = undefined; correction32 = @truncate(u32, ~(u64(recip32) *% q31b >> 32) +% 1); recip32 = @truncate(u32, u64(recip32) *% correction32 >> 31); correction32 = @truncate(u32, ~(u64(recip32) *% q31b >> 32) +% 1); recip32 = @truncate(u32, u64(recip32) *% correction32 >> 31); correction32 = @truncate(u32, ~(u64(recip32) *% q31b >> 32) +% 1); recip32 = @truncate(u32, u64(recip32) *% correction32 >> 31); // recip32 might have overflowed to exactly zero in the preceding // computation if the high word of b is exactly 1.0. This would sabotage // the full-width final stage of the computation that follows, so we adjust // recip32 downward by one bit. recip32 -%= 1; // We need to perform one more iteration to get us to 56 binary digits; // The last iteration needs to happen with extra precision. const q63blo: u32 = @truncate(u32, bSignificand << 11); var correction: u64 = undefined; var reciprocal: u64 = undefined; correction = ~(u64(recip32) *% q31b +% (u64(recip32) *% q63blo >> 32)) +% 1; const cHi = @truncate(u32, correction >> 32); const cLo = @truncate(u32, correction); reciprocal = u64(recip32) *% cHi +% (u64(recip32) *% cLo >> 32); // We already adjusted the 32-bit estimate, now we need to adjust the final // 64-bit reciprocal estimate downward to ensure that it is strictly smaller // than the infinitely precise exact reciprocal. Because the computation // of the Newton-Raphson step is truncating at every step, this adjustment // is small; most of the work is already done. reciprocal -%= 2; // The numerical reciprocal is accurate to within 2^-56, lies in the // interval [0.5, 1.0), and is strictly smaller than the true reciprocal // of b. Multiplying a by this reciprocal thus gives a numerical q = a/b // in Q53 with the following properties: // // 1. q < a/b // 2. q is in the interval [0.5, 2.0) // 3. the error in q is bounded away from 2^-53 (actually, we have a // couple of bits to spare, but this is all we need). // We need a 64 x 64 multiply high to compute q, which isn't a basic // operation in C, so we need to be a little bit fussy. var quotient: Z = undefined; var quotientLo: Z = undefined; wideMultiply(Z, aSignificand << 2, reciprocal, "ient, "ientLo); // Two cases: quotient is in [0.5, 1.0) or quotient is in [1.0, 2.0). // In either case, we are going to compute a residual of the form // // r = a - q*b // // We know from the construction of q that r satisfies: // // 0 <= r < ulp(q)*b // // if r is greater than 1/2 ulp(q)*b, then q rounds up. Otherwise, we // already have the correct result. The exact halfway case cannot occur. // We also take this time to right shift quotient if it falls in the [1,2) // range and adjust the exponent accordingly. var residual: Z = undefined; if (quotient < (implicitBit << 1)) { residual = (aSignificand << 53) -% quotient *% bSignificand; quotientExponent -%= 1; } else { quotient >>= 1; residual = (aSignificand << 52) -% quotient *% bSignificand; } const writtenExponent = quotientExponent +% exponentBias; if (writtenExponent >= maxExponent) { // If we have overflowed the exponent, return infinity. return @bitCast(f64, infRep | quotientSign); } else if (writtenExponent < 1) { if (writtenExponent == 0) { // Check whether the rounded result is normal. const round = @boolToInt((residual << 1) > bSignificand); // Clear the implicit bit. var absResult = quotient & significandMask; // Round. absResult += round; if ((absResult & ~significandMask) != 0) { // The rounded result is normal; return it. return @bitCast(f64, absResult | quotientSign); } } // Flush denormals to zero. In the future, it would be nice to add // code to round them correctly. return @bitCast(f64, quotientSign); } else { const round = @boolToInt((residual << 1) > bSignificand); // Clear the implicit bit var absResult = quotient & significandMask; // Insert the exponent absResult |= @bitCast(Z, SignedZ(writtenExponent)) << significandBits; // Round absResult +%= round; // Insert the sign and return return @bitCast(f64, absResult | quotientSign); } } fn wideMultiply(comptime Z: type, a: Z, b: Z, hi: *Z, lo: *Z) void { @setRuntimeSafety(builtin.is_test); switch (Z) { u32 => { // 32x32 --> 64 bit multiply const product = u64(a) * u64(b); hi.* = @truncate(u32, product >> 32); lo.* = @truncate(u32, product); }, u64 => { const S = struct { fn loWord(x: u64) u64 { return @truncate(u32, x); } fn hiWord(x: u64) u64 { return @truncate(u32, x >> 32); } }; // 64x64 -> 128 wide multiply for platforms that don't have such an operation; // many 64-bit platforms have this operation, but they tend to have hardware // floating-point, so we don't bother with a special case for them here. // Each of the component 32x32 -> 64 products const plolo: u64 = S.loWord(a) * S.loWord(b); const plohi: u64 = S.loWord(a) * S.hiWord(b); const philo: u64 = S.hiWord(a) * S.loWord(b); const phihi: u64 = S.hiWord(a) * S.hiWord(b); // Sum terms that contribute to lo in a way that allows us to get the carry const r0: u64 = S.loWord(plolo); const r1: u64 = S.hiWord(plolo) +% S.loWord(plohi) +% S.loWord(philo); lo.* = r0 +% (r1 << 32); // Sum terms contributing to hi with the carry from lo hi.* = S.hiWord(plohi) +% S.hiWord(philo) +% S.hiWord(r1) +% phihi; }, u128 => { const Word_LoMask = u64(0x00000000ffffffff); const Word_HiMask = u64(0xffffffff00000000); const Word_FullMask = u64(0xffffffffffffffff); const S = struct { fn Word_1(x: u128) u64 { return @truncate(u32, x >> 96); } fn Word_2(x: u128) u64 { return @truncate(u32, x >> 64); } fn Word_3(x: u128) u64 { return @truncate(u32, x >> 32); } fn Word_4(x: u128) u64 { return @truncate(u32, x); } }; // 128x128 -> 256 wide multiply for platforms that don't have such an operation; // many 64-bit platforms have this operation, but they tend to have hardware // floating-point, so we don't bother with a special case for them here. const product11: u64 = S.Word_1(a) * S.Word_1(b); const product12: u64 = S.Word_1(a) * S.Word_2(b); const product13: u64 = S.Word_1(a) * S.Word_3(b); const product14: u64 = S.Word_1(a) * S.Word_4(b); const product21: u64 = S.Word_2(a) * S.Word_1(b); const product22: u64 = S.Word_2(a) * S.Word_2(b); const product23: u64 = S.Word_2(a) * S.Word_3(b); const product24: u64 = S.Word_2(a) * S.Word_4(b); const product31: u64 = S.Word_3(a) * S.Word_1(b); const product32: u64 = S.Word_3(a) * S.Word_2(b); const product33: u64 = S.Word_3(a) * S.Word_3(b); const product34: u64 = S.Word_3(a) * S.Word_4(b); const product41: u64 = S.Word_4(a) * S.Word_1(b); const product42: u64 = S.Word_4(a) * S.Word_2(b); const product43: u64 = S.Word_4(a) * S.Word_3(b); const product44: u64 = S.Word_4(a) * S.Word_4(b); const sum0: u128 = u128(product44); const sum1: u128 = u128(product34) +% u128(product43); const sum2: u128 = u128(product24) +% u128(product33) +% u128(product42); const sum3: u128 = u128(product14) +% u128(product23) +% u128(product32) +% u128(product41); const sum4: u128 = u128(product13) +% u128(product22) +% u128(product31); const sum5: u128 = u128(product12) +% u128(product21); const sum6: u128 = u128(product11); const r0: u128 = (sum0 & Word_FullMask) +% ((sum1 & Word_LoMask) << 32); const r1: u128 = (sum0 >> 64) +% ((sum1 >> 32) & Word_FullMask) +% (sum2 & Word_FullMask) +% ((sum3 << 32) & Word_HiMask); lo.* = r0 +% (r1 << 64); hi.* = (r1 >> 64) +% (sum1 >> 96) +% (sum2 >> 64) +% (sum3 >> 32) +% sum4 +% (sum5 << 32) +% (sum6 << 64); }, else => @compileError("unsupported"), } } fn normalize(comptime T: type, significand: *@IntType(false, T.bit_count)) i32 { @setRuntimeSafety(builtin.is_test); const Z = @IntType(false, T.bit_count); const significandBits = std.math.floatMantissaBits(T); const implicitBit = Z(1) << significandBits; const shift = @clz(Z, significand.*) - @clz(Z, implicitBit); significand.* <<= @intCast(std.math.Log2Int(Z), shift); return 1 - shift; } test "import divdf3" { _ = @import("divdf3_test.zig"); }