Merge branch 'merge-shawnl-simd5'

This is the first 3 commits of #2945, plus my fixups.
This commit is contained in:
Andrew Kelley 2019-09-18 16:35:57 -04:00
commit 86209e1a92
No known key found for this signature in database
GPG Key ID: 7C5F548F728501A9
11 changed files with 626 additions and 68 deletions

View File

@ -7673,6 +7673,43 @@ test "@setRuntimeSafety" {
{#see_also|@shlExact|@shlWithOverflow#}
{#header_close#}
{#header_open|@shuffle#}
<pre>{#syntax#}@shuffle(comptime E: type, a: @Vector(a_len, E), b: @Vector(b_len, E), comptime mask: @Vector(mask_len, i32)) @Vector(mask_len, E){#endsyntax#}</pre>
<p>
Constructs a new {#link|vector|Vectors#} by selecting elements from {#syntax#}a{#endsyntax#} and
{#syntax#}b{#endsyntax#} based on {#syntax#}mask{#endsyntax#}.
</p>
<p>
Each element in {#syntax#}mask{#endsyntax#} selects an element from either {#syntax#}a{#endsyntax#} or
{#syntax#}b{#endsyntax#}. Positive numbers select from {#syntax#}a{#endsyntax#} starting at 0.
Negative values select from {#syntax#}b{#endsyntax#}, starting at {#syntax#}-1{#endsyntax#} and going down.
It is recommended to use the {#syntax#}~{#endsyntax#} operator from indexes from {#syntax#}b{#endsyntax#}
so that both indexes can start from {#syntax#}0{#endsyntax#} (i.e. {#syntax#}~i32(0){#endsyntax#} is
{#syntax#}-1{#endsyntax#}).
</p>
<p>
For each element of {#syntax#}mask{#endsyntax#}, if it or the selected value from
{#syntax#}a{#endsyntax#} or {#syntax#}b{#endsyntax#} is {#syntax#}undefined{#endsyntax#},
then the resulting element is {#syntax#}undefined{#endsyntax#}.
</p>
<p>
{#syntax#}a_len{#endsyntax#} and {#syntax#}b_len{#endsyntax#} may differ in length. Out-of-bounds element
indexes in {#syntax#}mask{#endsyntax#} result in compile errors.
</p>
<p>
If {#syntax#}a{#endsyntax#} or {#syntax#}b{#endsyntax#} is {#syntax#}undefined{#endsyntax#}, it
is equivalent to a vector of all {#syntax#}undefined{#endsyntax#} with the same length as the other vector.
If both vectors are {#syntax#}undefined{#endsyntax#}, {#syntax#}@shuffle{#endsyntax#} returns
a vector with all elements {#syntax#}undefined{#endsyntax#}.
</p>
<p>
{#syntax#}E{#endsyntax#} must be an {#link|integer|Integers#}, {#link|float|Floats#},
{#link|pointer|Pointers#}, or {#syntax#}bool{#endsyntax#}. The mask may be any vector length, and its
length determines the result length.
</p>
{#see_also|SIMD#}
{#header_close#}
{#header_open|@sizeOf#}
<pre>{#syntax#}@sizeOf(comptime T: type) comptime_int{#endsyntax#}</pre>
<p>

View File

@ -1351,7 +1351,7 @@ struct ZigTypeBoundFn {
};
struct ZigTypeVector {
// The type must be a pointer, integer, or float
// The type must be a pointer, integer, bool, or float
ZigType *elem_type;
uint32_t len;
};
@ -1611,6 +1611,7 @@ enum BuiltinFnId {
BuiltinFnIdIntToEnum,
BuiltinFnIdIntType,
BuiltinFnIdVectorType,
BuiltinFnIdShuffle,
BuiltinFnIdSetCold,
BuiltinFnIdSetRuntimeSafety,
BuiltinFnIdSetFloatMode,
@ -2428,6 +2429,7 @@ enum IrInstructionId {
IrInstructionIdBoolToInt,
IrInstructionIdIntType,
IrInstructionIdVectorType,
IrInstructionIdShuffleVector,
IrInstructionIdBoolNot,
IrInstructionIdMemset,
IrInstructionIdMemcpy,
@ -3669,6 +3671,15 @@ struct IrInstructionVectorToArray {
IrInstruction *result_loc;
};
struct IrInstructionShuffleVector {
IrInstruction base;
IrInstruction *scalar_type;
IrInstruction *a;
IrInstruction *b;
IrInstruction *mask; // This is in zig-format, not llvm format
};
struct IrInstructionAssertZero {
IrInstruction base;

View File

@ -4708,6 +4708,7 @@ ZigType *get_int_type(CodeGen *g, bool is_signed, uint32_t size_in_bits) {
bool is_valid_vector_elem_type(ZigType *elem_type) {
return elem_type->id == ZigTypeIdInt ||
elem_type->id == ZigTypeIdFloat ||
elem_type->id == ZigTypeIdBool ||
get_codegen_ptr_type(elem_type) != nullptr;
}
@ -4727,7 +4728,7 @@ ZigType *get_vector_type(CodeGen *g, uint32_t len, ZigType *elem_type) {
ZigType *entry = new_type_table_entry(ZigTypeIdVector);
if ((len != 0) && type_has_bits(elem_type)) {
// Vectors can only be ints, floats, or pointers. ints and floats have trivially resolvable
// Vectors can only be ints, floats, bools, or pointers. ints (inc. bools) and floats have trivially resolvable
// llvm type refs. pointers we will use usize instead.
LLVMTypeRef example_vector_llvm_type;
if (elem_type->id == ZigTypeIdPointer) {

View File

@ -4581,6 +4581,36 @@ static LLVMValueRef ir_render_ctz(CodeGen *g, IrExecutable *executable, IrInstru
return gen_widen_or_shorten(g, false, int_type, instruction->base.value.type, wrong_size_int);
}
static LLVMValueRef ir_render_shuffle_vector(CodeGen *g, IrExecutable *executable, IrInstructionShuffleVector *instruction) {
uint64_t len_a = instruction->a->value.type->data.vector.len;
uint64_t len_mask = instruction->mask->value.type->data.vector.len;
// LLVM uses integers larger than the length of the first array to
// index into the second array. This was deemed unnecessarily fragile
// when changing code, so Zig uses negative numbers to index the
// second vector. These start at -1 and go down, and are easiest to use
// with the ~ operator. Here we convert between the two formats.
IrInstruction *mask = instruction->mask;
LLVMValueRef *values = allocate<LLVMValueRef>(len_mask);
for (uint64_t i = 0; i < len_mask; i++) {
if (mask->value.data.x_array.data.s_none.elements[i].special == ConstValSpecialUndef) {
values[i] = LLVMGetUndef(LLVMInt32Type());
} else {
int32_t v = bigint_as_signed(&mask->value.data.x_array.data.s_none.elements[i].data.x_bigint);
uint32_t index_val = (v >= 0) ? (uint32_t)v : (uint32_t)~v + (uint32_t)len_a;
values[i] = LLVMConstInt(LLVMInt32Type(), index_val, false);
}
}
LLVMValueRef llvm_mask_value = LLVMConstVector(values, len_mask);
free(values);
return LLVMBuildShuffleVector(g->builder,
ir_llvm_value(g, instruction->a),
ir_llvm_value(g, instruction->b),
llvm_mask_value, "");
}
static LLVMValueRef ir_render_pop_count(CodeGen *g, IrExecutable *executable, IrInstructionPopCount *instruction) {
ZigType *int_type = instruction->op->value.type;
LLVMValueRef fn_val = get_int_builtin_fn(g, int_type, BuiltinFnIdPopCount);
@ -5549,10 +5579,29 @@ static LLVMValueRef ir_render_vector_to_array(CodeGen *g, IrExecutable *executab
assert(handle_is_ptr(array_type));
LLVMValueRef result_loc = ir_llvm_value(g, instruction->result_loc);
LLVMValueRef vector = ir_llvm_value(g, instruction->vector);
LLVMValueRef casted_ptr = LLVMBuildBitCast(g->builder, result_loc,
LLVMPointerType(get_llvm_type(g, instruction->vector->value.type), 0), "");
uint32_t alignment = get_ptr_align(g, instruction->result_loc->value.type);
gen_store_untyped(g, vector, casted_ptr, alignment, false);
ZigType *elem_type = array_type->data.array.child_type;
bool bitcast_ok = (elem_type->size_in_bits * 8) == elem_type->abi_size;
if (bitcast_ok) {
LLVMValueRef casted_ptr = LLVMBuildBitCast(g->builder, result_loc,
LLVMPointerType(get_llvm_type(g, instruction->vector->value.type), 0), "");
uint32_t alignment = get_ptr_align(g, instruction->result_loc->value.type);
gen_store_untyped(g, vector, casted_ptr, alignment, false);
} else {
// If the ABI size of the element type is not evenly divisible by size_in_bits, a simple bitcast
// will not work, and we fall back to extractelement.
LLVMTypeRef usize_type_ref = g->builtin_types.entry_usize->llvm_type;
LLVMTypeRef u32_type_ref = LLVMInt32Type();
LLVMValueRef zero = LLVMConstInt(usize_type_ref, 0, false);
for (uintptr_t i = 0; i < instruction->vector->value.type->data.vector.len; i++) {
LLVMValueRef index_usize = LLVMConstInt(usize_type_ref, i, false);
LLVMValueRef index_u32 = LLVMConstInt(u32_type_ref, i, false);
LLVMValueRef indexes[] = { zero, index_usize };
LLVMValueRef elem_ptr = LLVMBuildInBoundsGEP(g->builder, result_loc, indexes, 2, "");
LLVMValueRef elem = LLVMBuildExtractElement(g->builder, vector, index_u32, "");
LLVMBuildStore(g->builder, elem, elem_ptr);
}
}
return result_loc;
}
@ -5563,12 +5612,34 @@ static LLVMValueRef ir_render_array_to_vector(CodeGen *g, IrExecutable *executab
assert(vector_type->id == ZigTypeIdVector);
assert(!handle_is_ptr(vector_type));
LLVMValueRef array_ptr = ir_llvm_value(g, instruction->array);
LLVMValueRef casted_ptr = LLVMBuildBitCast(g->builder, array_ptr,
LLVMPointerType(get_llvm_type(g, vector_type), 0), "");
ZigType *array_type = instruction->array->value.type;
assert(array_type->id == ZigTypeIdArray);
uint32_t alignment = get_abi_alignment(g, array_type->data.array.child_type);
return gen_load_untyped(g, casted_ptr, alignment, false, "");
LLVMTypeRef vector_type_ref = get_llvm_type(g, vector_type);
ZigType *elem_type = vector_type->data.vector.elem_type;
bool bitcast_ok = (elem_type->size_in_bits * 8) == elem_type->abi_size;
if (bitcast_ok) {
LLVMValueRef casted_ptr = LLVMBuildBitCast(g->builder, array_ptr,
LLVMPointerType(vector_type_ref, 0), "");
ZigType *array_type = instruction->array->value.type;
assert(array_type->id == ZigTypeIdArray);
uint32_t alignment = get_abi_alignment(g, array_type->data.array.child_type);
return gen_load_untyped(g, casted_ptr, alignment, false, "");
} else {
// If the ABI size of the element type is not evenly divisible by size_in_bits, a simple bitcast
// will not work, and we fall back to insertelement.
LLVMTypeRef usize_type_ref = g->builtin_types.entry_usize->llvm_type;
LLVMTypeRef u32_type_ref = LLVMInt32Type();
LLVMValueRef zero = LLVMConstInt(usize_type_ref, 0, false);
LLVMValueRef vector = LLVMGetUndef(vector_type_ref);
for (uintptr_t i = 0; i < instruction->base.value.type->data.vector.len; i++) {
LLVMValueRef index_usize = LLVMConstInt(usize_type_ref, i, false);
LLVMValueRef index_u32 = LLVMConstInt(u32_type_ref, i, false);
LLVMValueRef indexes[] = { zero, index_usize };
LLVMValueRef elem_ptr = LLVMBuildInBoundsGEP(g->builder, array_ptr, indexes, 2, "");
LLVMValueRef elem = LLVMBuildLoad(g->builder, elem_ptr, "");
vector = LLVMBuildInsertElement(g->builder, vector, elem, index_u32, "");
}
return vector;
}
}
static LLVMValueRef ir_render_assert_zero(CodeGen *g, IrExecutable *executable,
@ -6054,6 +6125,8 @@ static LLVMValueRef ir_render_instruction(CodeGen *g, IrExecutable *executable,
return ir_render_spill_begin(g, executable, (IrInstructionSpillBegin *)instruction);
case IrInstructionIdSpillEnd:
return ir_render_spill_end(g, executable, (IrInstructionSpillEnd *)instruction);
case IrInstructionIdShuffleVector:
return ir_render_shuffle_vector(g, executable, (IrInstructionShuffleVector *) instruction);
}
zig_unreachable();
}
@ -7744,6 +7817,7 @@ static void define_builtin_fns(CodeGen *g) {
create_builtin_fn(g, BuiltinFnIdCompileLog, "compileLog", SIZE_MAX);
create_builtin_fn(g, BuiltinFnIdIntType, "IntType", 2); // TODO rename to Int
create_builtin_fn(g, BuiltinFnIdVectorType, "Vector", 2);
create_builtin_fn(g, BuiltinFnIdShuffle, "shuffle", 4);
create_builtin_fn(g, BuiltinFnIdSetCold, "setCold", 1);
create_builtin_fn(g, BuiltinFnIdSetRuntimeSafety, "setRuntimeSafety", 1);
create_builtin_fn(g, BuiltinFnIdSetFloatMode, "setFloatMode", 1);

View File

@ -717,6 +717,10 @@ static constexpr IrInstructionId ir_instruction_id(IrInstructionVectorType *) {
return IrInstructionIdVectorType;
}
static constexpr IrInstructionId ir_instruction_id(IrInstructionShuffleVector *) {
return IrInstructionIdShuffleVector;
}
static constexpr IrInstructionId ir_instruction_id(IrInstructionBoolNot *) {
return IrInstructionIdBoolNot;
}
@ -2277,6 +2281,25 @@ static IrInstruction *ir_build_vector_type(IrBuilder *irb, Scope *scope, AstNode
return &instruction->base;
}
static IrInstruction *ir_build_shuffle_vector(IrBuilder *irb, Scope *scope, AstNode *source_node,
IrInstruction *scalar_type, IrInstruction *a, IrInstruction *b, IrInstruction *mask)
{
IrInstructionShuffleVector *instruction = ir_build_instruction<IrInstructionShuffleVector>(irb, scope, source_node);
instruction->scalar_type = scalar_type;
instruction->a = a;
instruction->b = b;
instruction->mask = mask;
if (scalar_type != nullptr) {
ir_ref_instruction(scalar_type, irb->current_basic_block);
}
ir_ref_instruction(a, irb->current_basic_block);
ir_ref_instruction(b, irb->current_basic_block);
ir_ref_instruction(mask, irb->current_basic_block);
return &instruction->base;
}
static IrInstruction *ir_build_bool_not(IrBuilder *irb, Scope *scope, AstNode *source_node, IrInstruction *value) {
IrInstructionBoolNot *instruction = ir_build_instruction<IrInstructionBoolNot>(irb, scope, source_node);
instruction->value = value;
@ -4936,6 +4959,32 @@ static IrInstruction *ir_gen_builtin_fn_call(IrBuilder *irb, Scope *scope, AstNo
IrInstruction *vector_type = ir_build_vector_type(irb, scope, node, arg0_value, arg1_value);
return ir_lval_wrap(irb, scope, vector_type, lval, result_loc);
}
case BuiltinFnIdShuffle:
{
AstNode *arg0_node = node->data.fn_call_expr.params.at(0);
IrInstruction *arg0_value = ir_gen_node(irb, arg0_node, scope);
if (arg0_value == irb->codegen->invalid_instruction)
return arg0_value;
AstNode *arg1_node = node->data.fn_call_expr.params.at(1);
IrInstruction *arg1_value = ir_gen_node(irb, arg1_node, scope);
if (arg1_value == irb->codegen->invalid_instruction)
return arg1_value;
AstNode *arg2_node = node->data.fn_call_expr.params.at(2);
IrInstruction *arg2_value = ir_gen_node(irb, arg2_node, scope);
if (arg2_value == irb->codegen->invalid_instruction)
return arg2_value;
AstNode *arg3_node = node->data.fn_call_expr.params.at(3);
IrInstruction *arg3_value = ir_gen_node(irb, arg3_node, scope);
if (arg3_value == irb->codegen->invalid_instruction)
return arg3_value;
IrInstruction *shuffle_vector = ir_build_shuffle_vector(irb, scope, node,
arg0_value, arg1_value, arg2_value, arg3_value);
return ir_lval_wrap(irb, scope, shuffle_vector, lval, result_loc);
}
case BuiltinFnIdMemcpy:
{
AstNode *arg0_node = node->data.fn_call_expr.params.at(0);
@ -11000,6 +11049,19 @@ static ZigType *ir_resolve_type(IrAnalyze *ira, IrInstruction *type_value) {
return ir_resolve_const_type(ira->codegen, ira->new_irb.exec, type_value->source_node, val);
}
static ZigType *ir_resolve_vector_elem_type(IrAnalyze *ira, IrInstruction *elem_type_value) {
ZigType *elem_type = ir_resolve_type(ira, elem_type_value);
if (type_is_invalid(elem_type))
return ira->codegen->builtin_types.entry_invalid;
if (!is_valid_vector_elem_type(elem_type)) {
ir_add_error(ira, elem_type_value,
buf_sprintf("vector element type must be integer, float, bool, or pointer; '%s' is invalid",
buf_ptr(&elem_type->name)));
return ira->codegen->builtin_types.entry_invalid;
}
return elem_type;
}
static ZigType *ir_resolve_int_type(IrAnalyze *ira, IrInstruction *type_value) {
ZigType *ty = ir_resolve_type(ira, type_value);
if (type_is_invalid(ty))
@ -13092,6 +13154,59 @@ static bool optional_value_is_null(ConstExprValue *val) {
}
}
static IrInstruction *ir_evaluate_bin_op_cmp(IrAnalyze *ira, ZigType *resolved_type,
ConstExprValue *op1_val, ConstExprValue *op2_val, IrInstructionBinOp *bin_op_instruction, IrBinOp op_id,
bool one_possible_value) {
if (op1_val->special == ConstValSpecialUndef ||
op2_val->special == ConstValSpecialUndef)
return ir_const_undef(ira, &bin_op_instruction->base, resolved_type);
if (resolved_type->id == ZigTypeIdComptimeFloat || resolved_type->id == ZigTypeIdFloat) {
if (float_is_nan(op1_val) || float_is_nan(op2_val)) {
return ir_const_bool(ira, &bin_op_instruction->base, op_id == IrBinOpCmpNotEq);
}
Cmp cmp_result = float_cmp(op1_val, op2_val);
bool answer = resolve_cmp_op_id(op_id, cmp_result);
return ir_const_bool(ira, &bin_op_instruction->base, answer);
} else if (resolved_type->id == ZigTypeIdComptimeInt || resolved_type->id == ZigTypeIdInt) {
Cmp cmp_result = bigint_cmp(&op1_val->data.x_bigint, &op2_val->data.x_bigint);
bool answer = resolve_cmp_op_id(op_id, cmp_result);
return ir_const_bool(ira, &bin_op_instruction->base, answer);
} else if (resolved_type->id == ZigTypeIdPointer && op_id != IrBinOpCmpEq && op_id != IrBinOpCmpNotEq) {
if ((op1_val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr ||
op1_val->data.x_ptr.special == ConstPtrSpecialNull) &&
(op2_val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr ||
op2_val->data.x_ptr.special == ConstPtrSpecialNull))
{
uint64_t op1_addr = op1_val->data.x_ptr.special == ConstPtrSpecialNull ?
0 : op1_val->data.x_ptr.data.hard_coded_addr.addr;
uint64_t op2_addr = op2_val->data.x_ptr.special == ConstPtrSpecialNull ?
0 : op2_val->data.x_ptr.data.hard_coded_addr.addr;
Cmp cmp_result;
if (op1_addr > op2_addr) {
cmp_result = CmpGT;
} else if (op1_addr < op2_addr) {
cmp_result = CmpLT;
} else {
cmp_result = CmpEQ;
}
bool answer = resolve_cmp_op_id(op_id, cmp_result);
return ir_const_bool(ira, &bin_op_instruction->base, answer);
}
} else {
bool are_equal = one_possible_value || const_values_equal(ira->codegen, op1_val, op2_val);
bool answer;
if (op_id == IrBinOpCmpEq) {
answer = are_equal;
} else if (op_id == IrBinOpCmpNotEq) {
answer = !are_equal;
} else {
zig_unreachable();
}
return ir_const_bool(ira, &bin_op_instruction->base, answer);
}
zig_unreachable();
}
// Returns ErrorNotLazy when the value cannot be determined
static Error lazy_cmp_zero(AstNode *source_node, ConstExprValue *val, Cmp *result) {
Error err;
@ -13477,51 +13592,22 @@ never_mind_just_calculate_it_normally:
ConstExprValue *op2_val = one_possible_value ? &casted_op2->value : ir_resolve_const(ira, casted_op2, UndefBad);
if (op2_val == nullptr)
return ira->codegen->invalid_instruction;
if (resolved_type->id != ZigTypeIdVector)
return ir_evaluate_bin_op_cmp(ira, resolved_type, op1_val, op2_val, bin_op_instruction, op_id, one_possible_value);
IrInstruction *result = ir_const(ira, &bin_op_instruction->base,
get_vector_type(ira->codegen, resolved_type->data.vector.len, ira->codegen->builtin_types.entry_bool));
result->value.data.x_array.data.s_none.elements =
create_const_vals(resolved_type->data.vector.len);
if (resolved_type->id == ZigTypeIdComptimeFloat || resolved_type->id == ZigTypeIdFloat) {
if (float_is_nan(op1_val) || float_is_nan(op2_val)) {
return ir_const_bool(ira, &bin_op_instruction->base, op_id == IrBinOpCmpNotEq);
}
Cmp cmp_result = float_cmp(op1_val, op2_val);
bool answer = resolve_cmp_op_id(op_id, cmp_result);
return ir_const_bool(ira, &bin_op_instruction->base, answer);
} else if (resolved_type->id == ZigTypeIdComptimeInt || resolved_type->id == ZigTypeIdInt) {
Cmp cmp_result = bigint_cmp(&op1_val->data.x_bigint, &op2_val->data.x_bigint);
bool answer = resolve_cmp_op_id(op_id, cmp_result);
return ir_const_bool(ira, &bin_op_instruction->base, answer);
} else if (resolved_type->id == ZigTypeIdPointer && op_id != IrBinOpCmpEq && op_id != IrBinOpCmpNotEq) {
if ((op1_val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr ||
op1_val->data.x_ptr.special == ConstPtrSpecialNull) &&
(op2_val->data.x_ptr.special == ConstPtrSpecialHardCodedAddr ||
op2_val->data.x_ptr.special == ConstPtrSpecialNull))
{
uint64_t op1_addr = op1_val->data.x_ptr.special == ConstPtrSpecialNull ?
0 : op1_val->data.x_ptr.data.hard_coded_addr.addr;
uint64_t op2_addr = op2_val->data.x_ptr.special == ConstPtrSpecialNull ?
0 : op2_val->data.x_ptr.data.hard_coded_addr.addr;
Cmp cmp_result;
if (op1_addr > op2_addr) {
cmp_result = CmpGT;
} else if (op1_addr < op2_addr) {
cmp_result = CmpLT;
} else {
cmp_result = CmpEQ;
}
bool answer = resolve_cmp_op_id(op_id, cmp_result);
return ir_const_bool(ira, &bin_op_instruction->base, answer);
}
} else {
bool are_equal = one_possible_value || const_values_equal(ira->codegen, op1_val, op2_val);
bool answer;
if (op_id == IrBinOpCmpEq) {
answer = are_equal;
} else if (op_id == IrBinOpCmpNotEq) {
answer = !are_equal;
} else {
zig_unreachable();
}
return ir_const_bool(ira, &bin_op_instruction->base, answer);
expand_undef_array(ira->codegen, &result->value);
for (size_t i = 0;i < resolved_type->data.vector.len;i++) {
IrInstruction *cur_res = ir_evaluate_bin_op_cmp(ira, resolved_type->data.vector.elem_type,
&op1_val->data.x_array.data.s_none.elements[i],
&op2_val->data.x_array.data.s_none.elements[i],
bin_op_instruction, op_id, one_possible_value);
copy_const_val(&result->value.data.x_array.data.s_none.elements[i], &cur_res->value, false);
}
return result;
}
// some comparisons with unsigned numbers can be evaluated
@ -13564,7 +13650,12 @@ never_mind_just_calculate_it_normally:
IrInstruction *result = ir_build_bin_op(&ira->new_irb,
bin_op_instruction->base.scope, bin_op_instruction->base.source_node,
op_id, casted_op1, casted_op2, bin_op_instruction->safety_check_on);
result->value.type = ira->codegen->builtin_types.entry_bool;
if (resolved_type->id == ZigTypeIdVector) {
result->value.type = get_vector_type(ira->codegen, resolved_type->data.vector.len,
ira->codegen->builtin_types.entry_bool);
} else {
result->value.type = ira->codegen->builtin_types.entry_bool;
}
return result;
}
@ -22018,22 +22109,214 @@ static IrInstruction *ir_analyze_instruction_vector_type(IrAnalyze *ira, IrInstr
if (!ir_resolve_unsigned(ira, instruction->len->child, ira->codegen->builtin_types.entry_u32, &len))
return ira->codegen->invalid_instruction;
ZigType *elem_type = ir_resolve_type(ira, instruction->elem_type->child);
ZigType *elem_type = ir_resolve_vector_elem_type(ira, instruction->elem_type->child);
if (type_is_invalid(elem_type))
return ira->codegen->invalid_instruction;
if (!is_valid_vector_elem_type(elem_type)) {
ir_add_error(ira, instruction->elem_type,
buf_sprintf("vector element type must be integer, float, or pointer; '%s' is invalid",
buf_ptr(&elem_type->name)));
return ira->codegen->invalid_instruction;
}
ZigType *vector_type = get_vector_type(ira->codegen, len, elem_type);
return ir_const_type(ira, &instruction->base, vector_type);
}
static IrInstruction *ir_analyze_shuffle_vector(IrAnalyze *ira, IrInstruction *source_instr,
ZigType *scalar_type, IrInstruction *a, IrInstruction *b, IrInstruction *mask)
{
ir_assert(source_instr && scalar_type && a && b && mask, source_instr);
ir_assert(is_valid_vector_elem_type(scalar_type), source_instr);
uint32_t len_mask;
if (mask->value.type->id == ZigTypeIdVector) {
len_mask = mask->value.type->data.vector.len;
} else if (mask->value.type->id == ZigTypeIdArray) {
len_mask = mask->value.type->data.array.len;
} else {
ir_add_error(ira, mask,
buf_sprintf("expected vector or array, found '%s'",
buf_ptr(&mask->value.type->name)));
return ira->codegen->invalid_instruction;
}
mask = ir_implicit_cast(ira, mask, get_vector_type(ira->codegen, len_mask,
ira->codegen->builtin_types.entry_i32));
if (type_is_invalid(mask->value.type))
return ira->codegen->invalid_instruction;
uint32_t len_a;
if (a->value.type->id == ZigTypeIdVector) {
len_a = a->value.type->data.vector.len;
} else if (a->value.type->id == ZigTypeIdArray) {
len_a = a->value.type->data.array.len;
} else if (a->value.type->id == ZigTypeIdUndefined) {
len_a = UINT32_MAX;
} else {
ir_add_error(ira, a,
buf_sprintf("expected vector or array with element type '%s', found '%s'",
buf_ptr(&scalar_type->name),
buf_ptr(&a->value.type->name)));
return ira->codegen->invalid_instruction;
}
uint32_t len_b;
if (b->value.type->id == ZigTypeIdVector) {
len_b = b->value.type->data.vector.len;
} else if (b->value.type->id == ZigTypeIdArray) {
len_b = b->value.type->data.array.len;
} else if (b->value.type->id == ZigTypeIdUndefined) {
len_b = UINT32_MAX;
} else {
ir_add_error(ira, b,
buf_sprintf("expected vector or array with element type '%s', found '%s'",
buf_ptr(&scalar_type->name),
buf_ptr(&b->value.type->name)));
return ira->codegen->invalid_instruction;
}
if (len_a == UINT32_MAX && len_b == UINT32_MAX) {
return ir_const_undef(ira, a, get_vector_type(ira->codegen, len_mask, scalar_type));
}
if (len_a == UINT32_MAX) {
len_a = len_b;
a = ir_const_undef(ira, a, get_vector_type(ira->codegen, len_a, scalar_type));
} else {
a = ir_implicit_cast(ira, a, get_vector_type(ira->codegen, len_a, scalar_type));
if (type_is_invalid(a->value.type))
return ira->codegen->invalid_instruction;
}
if (len_b == UINT32_MAX) {
len_b = len_a;
b = ir_const_undef(ira, b, get_vector_type(ira->codegen, len_b, scalar_type));
} else {
b = ir_implicit_cast(ira, b, get_vector_type(ira->codegen, len_b, scalar_type));
if (type_is_invalid(b->value.type))
return ira->codegen->invalid_instruction;
}
ConstExprValue *mask_val = ir_resolve_const(ira, mask, UndefOk);
if (mask_val == nullptr)
return ira->codegen->invalid_instruction;
expand_undef_array(ira->codegen, mask_val);
for (uint32_t i = 0; i < len_mask; i += 1) {
ConstExprValue *mask_elem_val = &mask_val->data.x_array.data.s_none.elements[i];
if (mask_elem_val->special == ConstValSpecialUndef)
continue;
int32_t v_i32 = bigint_as_signed(&mask_elem_val->data.x_bigint);
uint32_t v;
IrInstruction *chosen_operand;
if (v_i32 >= 0) {
v = (uint32_t)v_i32;
chosen_operand = a;
} else {
v = (uint32_t)~v_i32;
chosen_operand = b;
}
if (v >= chosen_operand->value.type->data.vector.len) {
ErrorMsg *msg = ir_add_error(ira, mask,
buf_sprintf("mask index '%u' has out-of-bounds selection", i));
add_error_note(ira->codegen, msg, chosen_operand->source_node,
buf_sprintf("selected index '%u' out of bounds of %s", v,
buf_ptr(&chosen_operand->value.type->name)));
if (chosen_operand == a && v < len_a + len_b) {
add_error_note(ira->codegen, msg, b->source_node,
buf_create_from_str("selections from the second vector are specified with negative numbers"));
}
return ira->codegen->invalid_instruction;
}
}
ZigType *result_type = get_vector_type(ira->codegen, len_mask, scalar_type);
if (instr_is_comptime(a) && instr_is_comptime(b)) {
ConstExprValue *a_val = ir_resolve_const(ira, a, UndefOk);
if (a_val == nullptr)
return ira->codegen->invalid_instruction;
ConstExprValue *b_val = ir_resolve_const(ira, b, UndefOk);
if (b_val == nullptr)
return ira->codegen->invalid_instruction;
expand_undef_array(ira->codegen, a_val);
expand_undef_array(ira->codegen, b_val);
IrInstruction *result = ir_const(ira, source_instr, result_type);
result->value.data.x_array.data.s_none.elements = create_const_vals(len_mask);
for (uint32_t i = 0; i < mask_val->type->data.vector.len; i += 1) {
ConstExprValue *mask_elem_val = &mask_val->data.x_array.data.s_none.elements[i];
ConstExprValue *result_elem_val = &result->value.data.x_array.data.s_none.elements[i];
if (mask_elem_val->special == ConstValSpecialUndef) {
result_elem_val->special = ConstValSpecialUndef;
continue;
}
int32_t v = bigint_as_signed(&mask_elem_val->data.x_bigint);
// We've already checked for and emitted compile errors for index out of bounds here.
ConstExprValue *src_elem_val = (v >= 0) ?
&a->value.data.x_array.data.s_none.elements[v] :
&b->value.data.x_array.data.s_none.elements[~v];
copy_const_val(result_elem_val, src_elem_val, false);
ir_assert(result_elem_val->special == ConstValSpecialStatic, source_instr);
}
result->value.special = ConstValSpecialStatic;
return result;
}
// All static analysis passed, and not comptime.
// For runtime codegen, vectors a and b must be the same length. Here we
// recursively @shuffle the smaller vector to append undefined elements
// to it up to the length of the longer vector. This recursion terminates
// in 1 call because these calls to ir_analyze_shuffle_vector guarantee
// len_a == len_b.
if (len_a != len_b) {
uint32_t len_min = min(len_a, len_b);
uint32_t len_max = max(len_a, len_b);
IrInstruction *expand_mask = ir_const(ira, mask,
get_vector_type(ira->codegen, len_max, ira->codegen->builtin_types.entry_i32));
expand_mask->value.data.x_array.data.s_none.elements = create_const_vals(len_max);
uint32_t i = 0;
for (; i < len_min; i += 1)
bigint_init_unsigned(&expand_mask->value.data.x_array.data.s_none.elements[i].data.x_bigint, i);
for (; i < len_max; i += 1)
bigint_init_signed(&expand_mask->value.data.x_array.data.s_none.elements[i].data.x_bigint, -1);
IrInstruction *undef = ir_const_undef(ira, source_instr,
get_vector_type(ira->codegen, len_min, scalar_type));
if (len_b < len_a) {
b = ir_analyze_shuffle_vector(ira, source_instr, scalar_type, b, undef, expand_mask);
} else {
a = ir_analyze_shuffle_vector(ira, source_instr, scalar_type, a, undef, expand_mask);
}
}
IrInstruction *result = ir_build_shuffle_vector(&ira->new_irb,
source_instr->scope, source_instr->source_node,
nullptr, a, b, mask);
result->value.type = result_type;
return result;
}
static IrInstruction *ir_analyze_instruction_shuffle_vector(IrAnalyze *ira, IrInstructionShuffleVector *instruction) {
ZigType *scalar_type = ir_resolve_vector_elem_type(ira, instruction->scalar_type);
if (type_is_invalid(scalar_type))
return ira->codegen->invalid_instruction;
IrInstruction *a = instruction->a->child;
if (type_is_invalid(a->value.type))
return ira->codegen->invalid_instruction;
IrInstruction *b = instruction->b->child;
if (type_is_invalid(b->value.type))
return ira->codegen->invalid_instruction;
IrInstruction *mask = instruction->mask->child;
if (type_is_invalid(mask->value.type))
return ira->codegen->invalid_instruction;
return ir_analyze_shuffle_vector(ira, &instruction->base, scalar_type, a, b, mask);
}
static IrInstruction *ir_analyze_instruction_bool_not(IrAnalyze *ira, IrInstructionBoolNot *instruction) {
IrInstruction *value = instruction->value->child;
if (type_is_invalid(value->value.type))
@ -25578,6 +25861,8 @@ static IrInstruction *ir_analyze_instruction_base(IrAnalyze *ira, IrInstruction
return ir_analyze_instruction_int_type(ira, (IrInstructionIntType *)instruction);
case IrInstructionIdVectorType:
return ir_analyze_instruction_vector_type(ira, (IrInstructionVectorType *)instruction);
case IrInstructionIdShuffleVector:
return ir_analyze_instruction_shuffle_vector(ira, (IrInstructionShuffleVector *)instruction);
case IrInstructionIdBoolNot:
return ir_analyze_instruction_bool_not(ira, (IrInstructionBoolNot *)instruction);
case IrInstructionIdMemset:
@ -25913,6 +26198,7 @@ bool ir_has_side_effects(IrInstruction *instruction) {
case IrInstructionIdTruncate:
case IrInstructionIdIntType:
case IrInstructionIdVectorType:
case IrInstructionIdShuffleVector:
case IrInstructionIdBoolNot:
case IrInstructionIdSliceSrc:
case IrInstructionIdMemberCount:

View File

@ -42,6 +42,8 @@ static const char* ir_instruction_type_str(IrInstruction* instruction) {
switch (instruction->id) {
case IrInstructionIdInvalid:
return "Invalid";
case IrInstructionIdShuffleVector:
return "Shuffle";
case IrInstructionIdDeclVarSrc:
return "DeclVarSrc";
case IrInstructionIdDeclVarGen:
@ -1208,6 +1210,18 @@ static void ir_print_vector_type(IrPrint *irp, IrInstructionVectorType *instruct
fprintf(irp->f, ")");
}
static void ir_print_shuffle_vector(IrPrint *irp, IrInstructionShuffleVector *instruction) {
fprintf(irp->f, "@shuffle(");
ir_print_other_instruction(irp, instruction->scalar_type);
fprintf(irp->f, ", ");
ir_print_other_instruction(irp, instruction->a);
fprintf(irp->f, ", ");
ir_print_other_instruction(irp, instruction->b);
fprintf(irp->f, ", ");
ir_print_other_instruction(irp, instruction->mask);
fprintf(irp->f, ")");
}
static void ir_print_bool_not(IrPrint *irp, IrInstructionBoolNot *instruction) {
fprintf(irp->f, "! ");
ir_print_other_instruction(irp, instruction->value);
@ -2143,6 +2157,9 @@ static void ir_print_instruction(IrPrint *irp, IrInstruction *instruction, bool
case IrInstructionIdVectorType:
ir_print_vector_type(irp, (IrInstructionVectorType *)instruction);
break;
case IrInstructionIdShuffleVector:
ir_print_shuffle_vector(irp, (IrInstructionShuffleVector *)instruction);
break;
case IrInstructionIdBoolNot:
ir_print_bool_not(irp, (IrInstructionBoolNot *)instruction);
break;

View File

@ -116,7 +116,7 @@ pub fn hash(hasher: var, key: var, comptime strat: HashStrategy) void {
// Otherwise, hash every element.
// TODO remove the copy to an array once field access is done.
const array: [info.len]info.child = key;
comptime var i: u32 = 0;
comptime var i = 0;
inline while (i < info.len) : (i += 1) {
hash(hasher, array[i], strat);
}
@ -357,10 +357,13 @@ test "testHash union" {
test "testHash vector" {
const a: @Vector(4, u32) = [_]u32{ 1, 2, 3, 4 };
const b: @Vector(4, u32) = [_]u32{ 1, 2, 3, 5 };
const c: @Vector(4, u31) = [_]u31{ 1, 2, 3, 4 };
testing.expect(testHash(a) == testHash(a));
testing.expect(testHash(a) != testHash(b));
testing.expect(testHash(a) != testHash(c));
const c: @Vector(4, u31) = [_]u31{ 1, 2, 3, 4 };
const d: @Vector(4, u31) = [_]u31{ 1, 2, 3, 5 };
testing.expect(testHash(c) == testHash(c));
testing.expect(testHash(c) != testHash(d));
}
test "testHash error union" {

View File

@ -6484,6 +6484,19 @@ pub fn addCases(cases: *tests.CompileErrorContext) void {
"tmp.zig:7:23: error: unable to evaluate constant expression",
);
cases.addTest(
"@shuffle with selected index past first vector length",
\\export fn entry() void {
\\ const v: @Vector(4, u32) = [4]u32{ 10, 11, 12, 13 };
\\ const x: @Vector(4, u32) = [4]u32{ 14, 15, 16, 17 };
\\ var z = @shuffle(u32, v, x, [8]i32{ 0, 1, 2, 3, 7, 6, 5, 4 });
\\}
,
"tmp.zig:4:39: error: mask index '4' has out-of-bounds selection",
"tmp.zig:4:27: note: selected index '7' out of bounds of @Vector(4, u32)",
"tmp.zig:4:30: note: selections from the second vector are specified with negative numbers",
);
cases.addTest(
"nested vectors",
\\export fn entry() void {
@ -6491,7 +6504,7 @@ pub fn addCases(cases: *tests.CompileErrorContext) void {
\\ var v: V = undefined;
\\}
,
"tmp.zig:2:26: error: vector element type must be integer, float, or pointer; '@Vector(4, u8)' is invalid",
"tmp.zig:2:26: error: vector element type must be integer, float, bool, or pointer; '@Vector(4, u8)' is invalid",
);
cases.add("compileLog of tagged enum doesn't crash the compiler",

View File

@ -80,6 +80,7 @@ comptime {
_ = @import("behavior/pub_enum.zig");
_ = @import("behavior/ref_var_in_if_after_if_2nd_switch_prong.zig");
_ = @import("behavior/reflection.zig");
_ = @import("behavior/shuffle.zig");
_ = @import("behavior/sizeof_and_typeof.zig");
_ = @import("behavior/slice.zig");
_ = @import("behavior/slicetobytes.zig");

View File

@ -0,0 +1,57 @@
const std = @import("std");
const mem = std.mem;
const expect = std.testing.expect;
test "@shuffle" {
const S = struct {
fn doTheTest() void {
var v: @Vector(4, i32) = [4]i32{ 2147483647, -2, 30, 40 };
var x: @Vector(4, i32) = [4]i32{ 1, 2147483647, 3, 4 };
const mask: @Vector(4, i32) = [4]i32{ 0, ~i32(2), 3, ~i32(3) };
var res = @shuffle(i32, v, x, mask);
expect(mem.eql(i32, ([4]i32)(res), [4]i32{ 2147483647, 3, 40, 4 }));
// Implicit cast from array (of mask)
res = @shuffle(i32, v, x, [4]i32{ 0, ~i32(2), 3, ~i32(3) });
expect(mem.eql(i32, ([4]i32)(res), [4]i32{ 2147483647, 3, 40, 4 }));
// Undefined
const mask2: @Vector(4, i32) = [4]i32{ 3, 1, 2, 0 };
res = @shuffle(i32, v, undefined, mask2);
expect(mem.eql(i32, ([4]i32)(res), [4]i32{ 40, -2, 30, 2147483647 }));
// Upcasting of b
var v2: @Vector(2, i32) = [2]i32{ 2147483647, undefined };
const mask3: @Vector(4, i32) = [4]i32{ ~i32(0), 2, ~i32(0), 3 };
res = @shuffle(i32, x, v2, mask3);
expect(mem.eql(i32, ([4]i32)(res), [4]i32{ 2147483647, 3, 2147483647, 4 }));
// Upcasting of a
var v3: @Vector(2, i32) = [2]i32{ 2147483647, -2 };
const mask4: @Vector(4, i32) = [4]i32{ 0, ~i32(2), 1, ~i32(3) };
res = @shuffle(i32, v3, x, mask4);
expect(mem.eql(i32, ([4]i32)(res), [4]i32{ 2147483647, 3, -2, 4 }));
// bool
{
var x2: @Vector(4, bool) = [4]bool{ false, true, false, true };
var v4: @Vector(2, bool) = [2]bool{ true, false };
const mask5: @Vector(4, i32) = [4]i32{ 0, ~i32(1), 1, 2 };
var res2 = @shuffle(bool, x2, v4, mask5);
expect(mem.eql(bool, ([4]bool)(res2), [4]bool{ false, false, true, false }));
}
// TODO re-enable when LLVM codegen is fixed
// https://github.com/ziglang/zig/issues/3246
if (false) {
var x2: @Vector(3, bool) = [3]bool{ false, true, false };
var v4: @Vector(2, bool) = [2]bool{ true, false };
const mask5: @Vector(4, i32) = [4]i32{ 0, ~i32(1), 1, 2 };
var res2 = @shuffle(bool, x2, v4, mask5);
expect(mem.eql(bool, ([4]bool)(res2), [4]bool{ false, false, true, false }));
}
}
};
S.doTheTest();
comptime S.doTheTest();
}

View File

@ -2,6 +2,18 @@ const std = @import("std");
const mem = std.mem;
const expect = std.testing.expect;
test "implicit cast vector to array - bool" {
const S = struct {
fn doTheTest() void {
const a: @Vector(4, bool) = [_]bool{ true, false, true, false };
const result_array: [4]bool = a;
expect(mem.eql(bool, result_array, [4]bool{ true, false, true, false }));
}
};
S.doTheTest();
comptime S.doTheTest();
}
test "vector wrap operators" {
const S = struct {
fn doTheTest() void {
@ -18,6 +30,23 @@ test "vector wrap operators" {
comptime S.doTheTest();
}
test "vector bin compares with mem.eql" {
const S = struct {
fn doTheTest() void {
var v: @Vector(4, i32) = [4]i32{ 2147483647, -2, 30, 40 };
var x: @Vector(4, i32) = [4]i32{ 1, 2147483647, 30, 4 };
expect(mem.eql(bool, ([4]bool)(v == x), [4]bool{ false, false, true, false}));
expect(mem.eql(bool, ([4]bool)(v != x), [4]bool{ true, true, false, true}));
expect(mem.eql(bool, ([4]bool)(v < x), [4]bool{ false, true, false, false}));
expect(mem.eql(bool, ([4]bool)(v > x), [4]bool{ true, false, false, true}));
expect(mem.eql(bool, ([4]bool)(v <= x), [4]bool{ false, true, true, false}));
expect(mem.eql(bool, ([4]bool)(v >= x), [4]bool{ true, false, true, true}));
}
};
S.doTheTest();
comptime S.doTheTest();
}
test "vector int operators" {
const S = struct {
fn doTheTest() void {
@ -80,3 +109,32 @@ test "array to vector" {
var arr = [4]f32{ foo, 1.5, 0.0, 0.0 };
var vec: @Vector(4, f32) = arr;
}
test "vector casts of sizes not divisable by 8" {
const S = struct {
fn doTheTest() void {
{
var v: @Vector(4, u3) = [4]u3{ 5, 2, 3, 0};
var x: [4]u3 = v;
expect(mem.eql(u3, x, ([4]u3)(v)));
}
{
var v: @Vector(4, u2) = [4]u2{ 1, 2, 3, 0};
var x: [4]u2 = v;
expect(mem.eql(u2, x, ([4]u2)(v)));
}
{
var v: @Vector(4, u1) = [4]u1{ 1, 0, 1, 0};
var x: [4]u1 = v;
expect(mem.eql(u1, x, ([4]u1)(v)));
}
{
var v: @Vector(4, bool) = [4]bool{ false, false, true, false};
var x: [4]bool = v;
expect(mem.eql(bool, x, ([4]bool)(v)));
}
}
};
S.doTheTest();
comptime S.doTheTest();
}