pico-sdk/test/pico_divider_test/pico_divider_nesting_test.c
graham sanderson efe2103f9b
Some checks failed
CMake / build (push) Has been cancelled
Build on macOS / build (push) Has been cancelled
Build on Windows / build (push) Has been cancelled
Multi GCC / build (push) Has been cancelled
SDK 2.0.0 release
2024-08-08 08:54:38 -05:00

262 lines
6.4 KiB
C

/*
* Copyright (c) 2020 Raspberry Pi (Trading) Ltd.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "pico/stdlib.h"
#include "hardware/dma.h"
#include "hardware/irq.h"
#include "hardware/sync.h"
volatile bool failed;
volatile uint32_t count[3];
volatile bool done;
#define FAILED() ({ failed = true; })
//#define FAILED() ({ failed = true; __breakpoint(); })
//#define DOUBLE_ONLY 1
bool timer_callback(repeating_timer_t *t) {
count[0]++;
static int z;
#if !DOUBLE_ONLY
for (int i=0; i<100;i++) {
z += 23;
int a = z / 7;
int b = z % 7;
if (z != a * 7 + b) {
FAILED();
}
a = z / -7;
b = z % -7;
if (z != a * -7 + b) {
FAILED();
}
}
#else
for(int i=0;i<10;i++) {
#endif
float fz = (float) z;
float fa = fz / 11.0f;
// float fb = fmodf(fz, 11.0f);
// if (fabs(fz - (fa * 11.0f + fb)) > 1e-9f) {
// FAILED();
// }
if (fabsf(fz - fa * 11.0f) > 1e-3f) {
FAILED();
}
double dz = z;
double da = dz / 11.0;
// double db = fmod(dz, 11.0);
// if (abs(dz - (da * 11.0 + db)) > 1e-9) {
// FAILED();
// }
if (fabs(dz - da * 11.0) > 1e-6f) {
FAILED();
}
#if DOUBLE_ONLY
}
#endif
return !done;
}
void do_dma_start(uint ch) {
static uint32_t word[2];
assert(ch < 2);
dma_channel_config c = dma_channel_get_default_config(ch);
// todo remove this; landing in a separate PR
#ifndef DREQ_DMA_TIMER0
#define DREQ_DMA_TIMER0 0x3b
#endif
channel_config_set_dreq(&c, DREQ_DMA_TIMER0);
dma_channel_configure(ch, &c, &word[ch], &word[ch], 513 + ch * 23, true);
}
double d0c, d0s, d0t, dz;
float f0c, f0s, f0t, fz;
double flarn = 25.5;
double zzd = 13.3;
void test_irq_handler0() {
count[1]++;
dma_hw->ints0 |= 1u;
static uint z;
static uint dz;
for (int i=0; i<80;i++) {
#if !DOUBLE_ONLY
z += 31;
uint a = z / 11;
uint b = z % 11;
if (z != a * 11 + b) {
FAILED();
}
#else
zzd += flarn/(flarn + 1.35);
break;
#endif
}
if (done) dma_channel_abort(0);
else do_dma_start(0);
}
void test_irq_handler1() {
static uint z;
dma_hw->ints1 |= 2u;
count[2]++;
for (int i=0; i<130;i++) {
#if !DOUBLE_ONLY
z += 47;
uint a = z / -13;
uint b = z % -13;
if (z != a * -13 + b) {
FAILED();
}
static uint64_t z64;
z64 -= 47;
uint64_t a64 = z64 / -13;
uint64_t b64 = z64 % -13;
if (z64 != a64 * -13 + b64) {
FAILED();
}
#else
zzd += flarn/123.3;
break;
#endif
}
if (done) dma_channel_abort(1);
else do_dma_start(1);
}
void test_nesting() {
uint z = 0;
// We have 3 different IRQ handlers, one for timer, two for DMA completion (on DMA_IRQ0/1)
// thus we expect re-entrancy even between IRQs
//
// They all busily make use of the dividers, to expose any issues with nested use
repeating_timer_t timer;
add_repeating_timer_us(929, timer_callback, NULL, &timer);
irq_set_exclusive_handler(DMA_IRQ_0, test_irq_handler0);
irq_set_exclusive_handler(DMA_IRQ_1, test_irq_handler1);
dma_set_irq0_channel_mask_enabled(1u, true);
dma_set_irq1_channel_mask_enabled(2u, true);
dma_hw->timer[0] = (1 << 16) | 32; // run at 1/32 system clock
irq_set_enabled(DMA_IRQ_0, 1);
irq_set_enabled(DMA_IRQ_1, 1);
do_dma_start(0);
do_dma_start(1);
absolute_time_t end = delayed_by_ms(get_absolute_time(), 10000);
int count_local=0;
while (!time_reached(end)) {
for(uint i=0;i<100;i++) {
z += 31;
uint a = z / 11;
uint b = z % 11;
if (z != a * 11 + b) {
FAILED();
}
int zz = (int)z;
int aa = zz / -11;
int bb = zz % -11;
if (zz != aa * -11 + bb) {
FAILED();
}
aa = -zz / -11;
bb = -zz % -11;
if (-zz != aa * -11 + bb) {
FAILED();
}
aa = -zz / 11;
bb = -zz % 11;
if (-zz != aa * 11 + bb) {
FAILED();
}
a = 0xffffffffu / 11;
b = 0xffffffffu % 11;
if (0xffffffffu != a * 11 + b) {
FAILED();
}
static uint64_t z64;
z64 -= 47;
uint64_t a64 = z64 / -13635;
uint64_t b64 = z64 % -13635;
if (z64 != a64 * -13635 + b64) {
FAILED();
}
// specifically check 64/32 divide
static uint64_t c64 = 0x13ffffffffull;
static uint32_t cd = 1;
a64 = c64 / cd;
b64 = c64 % cd;
if (c64 != a64 * cd + b64) {
FAILED();
}
cd++;
static float zf = 1.f;
float ff = zf / -13635.f;
if (fabsf(zf - ff * -13635.f) > 1e-2f) {
FAILED();
}
zf += 0.0331f;
z += (int)ff;
static double zd = 1.0;
double dd = zd / -13635.0;
if (fabs(zd - dd * -13635.0) > 1e-6) {
FAILED();
}
zd += 0.331;
z += (int)dd;
}
// todo this still seems broken on RP2350
#if PICO_RP2040
// these use the divider
for(uint i=0;i<=100;i+=20) {
// both in and out bootrom range (we perform mod in wrapper code if necessarry)
f0t = tanf(i * 50);
f0c = cosf(i * 50);
f0s = sinf(i * 50);
d0t = tan(i * 1000);
d0c = cos(i * 1000);
d0s = sin(i * 1000);
}
#endif
count_local++;
}
done = true;
cancel_repeating_timer(&timer);
printf("%d: %d %d %d\n", count_local, (int)count[0], (int)count[1], (int)count[2]);
printf("%d\n", z);
// make sure all the IRQs ran
if (!(count_local && count[0] && count[1] && count[2])) {
printf("DID NOT RUN\n");
exit(1);
}
if (failed) {
printf("FAILED\n");
exit(1);
}
}
int main() {
#ifndef uart_default
#warning test/pico_divider requires a default uart
#else
stdio_init_all();
#endif
test_nesting();
printf("PASSED\n");
return 0;
}