Revert "Add C11 standard atomic support (#1645)"
Some checks are pending
CMake / build (push) Waiting to run
Build on macOS / build (push) Waiting to run
Build on Windows / build (push) Waiting to run

This reverts commit 01dec6fb6f.
This commit is contained in:
graham sanderson 2024-07-08 18:54:48 -05:00
parent 01dec6fb6f
commit b1abf96cec
5 changed files with 0 additions and 387 deletions

View File

@ -51,7 +51,6 @@ if (NOT PICO_BARE_METAL)
pico_add_subdirectory(pico_malloc)
pico_add_subdirectory(pico_printf)
pico_add_subdirectory(pico_rand)
pico_add_subdirectory(pico_atomic)
pico_add_subdirectory(pico_stdio)
pico_add_subdirectory(pico_stdio_semihosting)

View File

@ -1,11 +0,0 @@
if (NOT TARGET pico_atomic)
pico_add_library(pico_atomic)
target_sources(pico_atomic INTERFACE
${CMAKE_CURRENT_LIST_DIR}/pico_atomic.c
)
target_include_directories(pico_atomic_headers INTERFACE ${CMAKE_CURRENT_LIST_DIR}/include)
target_link_libraries(pico_atomic INTERFACE pico_sync)
endif()

View File

@ -1,27 +0,0 @@
/*
* Copyright (c) 2024 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2024 Stephen Street (stephen@redrocketcomputing.com).
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#ifndef __STDATOMIC_H
#define __STDATOMIC_H
#include_next <stdatomic.h>
#undef atomic_flag_test_and_set
#undef atomic_flag_test_and_set_explicit
#undef atomic_flag_clear
#undef atomic_flag_clear_explicit
extern _Bool __atomic_test_and_set_m0(volatile void *mem, int model);
extern void __atomic_clear_m0 (volatile void *mem, int model);
#define atomic_flag_test_and_set(PTR) __atomic_test_and_set_m0((PTR), __ATOMIC_SEQ_CST)
#define atomic_flag_test_and_set_explicit(PTR, MO) __atomic_test_and_set_m0((PTR), (MO))
#define atomic_flag_clear(PTR) __atomic_clear_m0((PTR), __ATOMIC_SEQ_CST)
#define atomic_flag_clear_explicit(PTR, MO) __atomic_clear_m0((PTR), (MO))
#endif

View File

@ -1,345 +0,0 @@
/*
* Copyright (c) 2024 Raspberry Pi (Trading) Ltd.
* Copyright (c) 2024 Stephen Street (stephen@redrocketcomputing.com).
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdbool.h>
#include <stdint.h>
#include "hardware/address_mapped.h"
#include "hardware/regs/watchdog.h"
#include "hardware/sync.h"
#include "pico/config.h"
#ifndef __optimize
#define __optimize __attribute__((optimize("-Os")))
#endif
/* Must be powers of 2 */
#define ATOMIC_STRIPE 4UL
#define ATOMIC_LOCKS 16UL
#define ATOMIC_LOCK_WIDTH 2UL
#define ATOMIC_LOCK_IDX_Pos ((sizeof(unsigned long) * 8) - (__builtin_clz(ATOMIC_STRIPE - 1)))
#define ATOMIC_LOCK_IDX_Msk (ATOMIC_LOCKS - 1UL)
#define ATOMIC_LOCK_REG ((io_rw_32 *)(WATCHDOG_BASE + WATCHDOG_SCRATCH3_OFFSET))
static __used __attribute__((section(".preinit_array.00030"))) void __atomic_init(void) {
*ATOMIC_LOCK_REG = 0;
}
/*
To eliminate interference with existing hardware spinlock usage and reduce multicore contention on
unique atomic variables, we use one of the watchdog scratch registers (WATCHDOG_SCRATCH3) to
implement 16, 2 bit, multicore locks, via a varation of Dekker's algorithm
(see https://en.wikipedia.org/wiki/Dekker%27s_algorithm). The lock is selected as a
function of the variable address and the stripe width which hashes variables
addresses to locks numbers.
*/
static __optimize uint32_t __atomic_lock(volatile void *mem) {
const uint32_t core = get_core_num();
const uint32_t lock_idx = (((uintptr_t)mem) >> ATOMIC_LOCK_IDX_Pos) & ATOMIC_LOCK_IDX_Msk;
const uint32_t lock_pos = lock_idx * ATOMIC_LOCK_WIDTH;
const uint32_t lock_mask = ((1UL << ATOMIC_LOCK_WIDTH) - 1) << lock_pos;
const uint32_t locked_mask = 1UL << (lock_pos + core);
uint32_t state = save_and_disable_interrupts();
while (true) {
/* First set the bit */
hw_set_bits(ATOMIC_LOCK_REG, locked_mask);
__dmb();
/* Did we get the lock? */
if ((*ATOMIC_LOCK_REG & lock_mask) == locked_mask)
break;
/* Nope, clear our side */
__dmb();
hw_clear_bits(ATOMIC_LOCK_REG, locked_mask);
/* Need to break any ties if the cores are in lock step, is this really required? */
for (uint32_t i = core * 2; i > 0; --i)
asm volatile ("nop");
}
return state;
}
static __optimize void __atomic_unlock(volatile void *mem, uint32_t state) {
const uint32_t lock_idx = (((uintptr_t)mem) >> ATOMIC_LOCK_IDX_Pos) & ATOMIC_LOCK_IDX_Msk;
const uint32_t lock_pos = lock_idx * ATOMIC_LOCK_WIDTH;
const uint32_t locked_mask = 1UL << (lock_pos + get_core_num());
__dmb();
hw_clear_bits(ATOMIC_LOCK_REG, locked_mask);
restore_interrupts(state);
}
__optimize uint8_t __atomic_fetch_add_1(volatile void *mem, uint8_t val, __unused int model) {
volatile uint8_t *ptr = mem;
uint8_t state = __atomic_lock(mem);
uint8_t result = *ptr;
*ptr += val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint8_t __atomic_fetch_sub_1(volatile void *mem, uint8_t val, __unused int model) {
volatile uint8_t *ptr = mem;
uint8_t state = __atomic_lock(mem);
uint8_t result = *ptr;
*ptr -= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint8_t __atomic_fetch_and_1(volatile void *mem, uint8_t val, __unused int model) {
volatile uint8_t *ptr = mem;
uint8_t state = __atomic_lock(mem);
uint8_t result = *ptr;
*ptr &= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint8_t __atomic_fetch_or_1(volatile void *mem, uint8_t val, __unused int model) {
volatile uint8_t *ptr = mem;
uint8_t state = __atomic_lock(mem);
uint8_t result = *ptr;
*ptr |= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint8_t __atomic_exchange_1(volatile void *mem, uint8_t val, __unused int model) {
volatile uint8_t *ptr = mem;
uint8_t state = __atomic_lock(mem);
uint8_t result = *ptr;
*ptr = val;
__atomic_unlock(mem, state);
return result;
}
__optimize bool __atomic_compare_exchange_1(volatile void *mem, void *expected, uint8_t desired, __unused bool weak, __unused int success, __unused int failure) {
bool result = false;
volatile uint8_t *ptr = mem;
uint8_t *e_ptr = expected;
uint8_t state = __atomic_lock(mem);
if (*ptr == *e_ptr) {
*ptr = desired;
result = true;
} else
*e_ptr = *ptr;
__atomic_unlock(mem, state);
return result;
}
__optimize uint16_t __atomic_fetch_add_2(volatile void *mem, uint16_t val, __unused int model) {
volatile uint16_t *ptr = mem;
uint16_t state = __atomic_lock(mem);
uint16_t result = *ptr;
*ptr += val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint16_t __atomic_fetch_sub_2(volatile void *mem, uint16_t val, __unused int model) {
volatile uint16_t *ptr = mem;
uint16_t state = __atomic_lock(mem);
uint16_t result = *ptr;
*ptr -= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint16_t __atomic_fetch_and_2(volatile void *mem, uint16_t val, __unused int model) {
volatile uint16_t *ptr = mem;
uint16_t state = __atomic_lock(mem);
uint16_t result = *ptr;
*ptr &= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint16_t __atomic_fetch_or_2(volatile void *mem, uint16_t val, __unused int model) {
volatile uint16_t *ptr = mem;
uint16_t state = __atomic_lock(mem);
uint16_t result = *ptr;
*ptr |= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint16_t __atomic_exchange_2(volatile void *mem, uint16_t val, __unused int model) {
volatile uint16_t *ptr = mem;
uint16_t state = __atomic_lock(mem);
uint16_t result = *ptr;
*ptr = val;
__atomic_unlock(mem, state);
return result;
}
__optimize bool __atomic_compare_exchange_2(volatile void *mem, void *expected, uint16_t desired, __unused bool weak, __unused int success, __unused int failure) {
bool result = false;
volatile uint16_t *ptr = mem;
uint16_t *e_ptr = expected;
uint16_t state = __atomic_lock(mem);
if (*ptr == *e_ptr) {
*ptr = desired;
result = true;
} else
*e_ptr = *ptr;
__atomic_unlock(mem, state);
return result;
}
__optimize uint32_t __atomic_fetch_add_4(volatile void *mem, uint32_t val, __unused int model) {
volatile uint32_t *ptr = mem;
uint32_t state = __atomic_lock(mem);
uint32_t result = *ptr;
*ptr += val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint32_t __atomic_fetch_sub_4(volatile void *mem, uint32_t val, __unused int model) {
volatile uint32_t *ptr = mem;
uint32_t state = __atomic_lock(mem);
uint32_t result = *ptr;
*ptr -= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint32_t __atomic_fetch_and_4(volatile void *mem, uint32_t val, __unused int model) {
volatile uint32_t *ptr = mem;
uint32_t state = __atomic_lock(mem);
uint32_t result = *ptr;
*ptr &= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint32_t __atomic_fetch_or_4(volatile void *mem, uint32_t val, __unused int model) {
volatile uint32_t *ptr = mem;
uint32_t state = __atomic_lock(mem);
uint32_t result = *ptr;
*ptr |= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint32_t __atomic_exchange_4(volatile void *mem, uint32_t val, __unused int model) {
volatile uint32_t *ptr = mem;
uint32_t state = __atomic_lock(mem);
uint32_t result = *ptr;
*ptr = val;
__atomic_unlock(mem, state);
return result;
}
__optimize bool __atomic_compare_exchange_4(volatile void *mem, void *expected, uint32_t desired, __unused bool weak, __unused int success, __unused int failure) {
bool result = false;
volatile uint32_t *ptr = mem;
uint32_t *e_ptr = expected;
uint32_t state = __atomic_lock(mem);
if (*ptr == *e_ptr) {
*ptr = desired;
result = true;
} else
*e_ptr = *ptr;
__atomic_unlock(mem, state);
return result;
}
__optimize uint64_t __atomic_fetch_add_8(volatile void *mem, uint64_t val, __unused int model) {
volatile uint64_t *ptr = mem;
uint64_t state = __atomic_lock(mem);
uint64_t result = *ptr;
*ptr += val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint64_t __atomic_fetch_sub_8(volatile void *mem, uint64_t val, __unused int model) {
volatile uint64_t *ptr = mem;
uint64_t state = __atomic_lock(mem);
uint64_t result = *ptr;
*ptr -= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint64_t __atomic_fetch_and_8(volatile void *mem, uint64_t val, __unused int model) {
volatile uint64_t *ptr = mem;
uint64_t state = __atomic_lock(mem);
uint64_t result = *ptr;
*ptr &= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint64_t __atomic_fetch_or_8(volatile void *mem, uint64_t val, __unused int model) {
volatile uint64_t *ptr = mem;
uint64_t state = __atomic_lock(mem);
uint64_t result = *ptr;
*ptr |= val;
__atomic_unlock(mem, state);
return result;
}
__optimize uint64_t __atomic_exchange_8(volatile void *mem, uint64_t val, __unused int model) {
volatile uint64_t *ptr = mem;
uint64_t state = __atomic_lock(mem);
uint64_t result = *ptr;
*ptr = val;
__atomic_unlock(mem, state);
return result;
}
__optimize bool __atomic_compare_exchange_8(volatile void *mem, void *expected, uint64_t desired, __unused bool weak, __unused int success, __unused int failure) {
bool result = false;
volatile uint64_t *ptr = mem;
uint64_t *e_ptr = expected;
uint64_t state = __atomic_lock(mem);
if (*ptr == *e_ptr) {
*ptr = desired;
result = true;
} else
*e_ptr = *ptr;
__atomic_unlock(mem, state);
return result;
}
__optimize uint64_t __atomic_load_8(volatile void *mem, __unused int model) {
volatile uint64_t *ptr = mem;
uint32_t state = __atomic_lock(mem);
uint32_t result = *ptr;
__atomic_unlock(mem, state);
return result;
}
__optimize void __atomic_store_8(volatile void *mem, uint64_t val, __unused int model) {
volatile uint64_t *ptr = mem;
uint32_t state = __atomic_lock(mem);
*ptr = val;
__atomic_unlock(mem, state);
}
__optimize bool __atomic_test_and_set_m0(volatile void *mem, __unused int model) {
volatile bool *ptr = mem;
uint32_t state = __atomic_lock(mem);
volatile bool result = *ptr;
*ptr = true;
__atomic_unlock(mem, state);
return result;
}
__optimize void __atomic_clear_m0(volatile void *mem, __unused int model) {
volatile bool *ptr = mem;
*ptr = false;
__dmb();
}

View File

@ -35,9 +35,6 @@ endif()
if (TARGET pico_mem_ops)
pico_mirrored_target_link_libraries(pico_runtime INTERFACE pico_mem_ops)
endif()
if (TARGET pico_atomic)
pico_mirrored_target_link_libraries(pico_runtime INTERFACE pico_atomic)
endif()
if (TARGET pico_standard_link)
pico_mirrored_target_link_libraries(pico_runtime INTERFACE pico_standard_link)
endif()